Source code for speechbrain.nnet.CNN

"""Library implementing convolutional neural networks.

Authors
 * Mirco Ravanelli 2020
 * Jianyuan Zhong 2020
 * Cem Subakan 2021
 * Davide Borra 2021
 * Andreas Nautsch 2022
 * Sarthak Yadav 2022
"""

import math
import torch
import logging
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from typing import Tuple
from speechbrain.processing.signal_processing import (
    gabor_impulse_response,
    gabor_impulse_response_legacy_complex,
)

logger = logging.getLogger(__name__)


[docs] class SincConv(nn.Module): """This function implements SincConv (SincNet). M. Ravanelli, Y. Bengio, "Speaker Recognition from raw waveform with SincNet", in Proc. of SLT 2018 (https://arxiv.org/abs/1808.00158) Arguments --------- input_shape : tuple The shape of the input. Alternatively use ``in_channels``. in_channels : int The number of input channels. Alternatively use ``input_shape``. out_channels : int It is the number of output channels. kernel_size: int Kernel size of the convolutional filters. stride : int Stride factor of the convolutional filters. When the stride factor > 1, a decimation in time is performed. dilation : int Dilation factor of the convolutional filters. padding : str (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is the same as the input shape. "causal" results in causal (dilated) convolutions. padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. groups : int This option specifies the convolutional groups. See torch.nn documentation for more information. bias : bool If True, the additive bias b is adopted. sample_rate : int, Sampling rate of the input signals. It is only used for sinc_conv. min_low_hz : float Lowest possible frequency (in Hz) for a filter. It is only used for sinc_conv. min_low_hz : float Lowest possible value (in Hz) for a filter bandwidth. Example ------- >>> inp_tensor = torch.rand([10, 16000]) >>> conv = SincConv(input_shape=inp_tensor.shape, out_channels=25, kernel_size=11) >>> out_tensor = conv(inp_tensor) >>> out_tensor.shape torch.Size([10, 16000, 25]) """ def __init__( self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=1, dilation=1, padding="same", padding_mode="reflect", sample_rate=16000, min_low_hz=50, min_band_hz=50, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.padding_mode = padding_mode self.sample_rate = sample_rate self.min_low_hz = min_low_hz self.min_band_hz = min_band_hz # input shape inference if input_shape is None and self.in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if self.in_channels is None: self.in_channels = self._check_input_shape(input_shape) if self.out_channels % self.in_channels != 0: raise ValueError( "Number of output channels must be divisible by in_channels" ) # Initialize Sinc filters self._init_sinc_conv()
[docs] def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 2d or 4d tensors are expected. """ x = x.transpose(1, -1) self.device = x.device unsqueeze = x.ndim == 2 if unsqueeze: x = x.unsqueeze(1) if self.padding == "same": x = self._manage_padding( x, self.kernel_size, self.dilation, self.stride ) elif self.padding == "causal": num_pad = (self.kernel_size - 1) * self.dilation x = F.pad(x, (num_pad, 0)) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same', 'valid' or 'causal'. Got %s." % (self.padding) ) sinc_filters = self._get_sinc_filters() wx = F.conv1d( x, sinc_filters, stride=self.stride, padding=0, dilation=self.dilation, groups=self.in_channels, ) if unsqueeze: wx = wx.squeeze(1) wx = wx.transpose(1, -1) return wx
def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 2: in_channels = 1 elif len(shape) == 3: in_channels = shape[-1] else: raise ValueError( "sincconv expects 2d or 3d inputs. Got " + str(len(shape)) ) # Kernel size must be odd if self.kernel_size % 2 == 0: raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) return in_channels def _get_sinc_filters(self,): """This functions creates the sinc-filters to used for sinc-conv.""" # Computing the low frequencies of the filters low = self.min_low_hz + torch.abs(self.low_hz_) # Setting minimum band and minimum freq high = torch.clamp( low + self.min_band_hz + torch.abs(self.band_hz_), self.min_low_hz, self.sample_rate / 2, ) band = (high - low)[:, 0] # Passing from n_ to the corresponding f_times_t domain self.n_ = self.n_.to(self.device) self.window_ = self.window_.to(self.device) f_times_t_low = torch.matmul(low, self.n_) f_times_t_high = torch.matmul(high, self.n_) # Left part of the filters. band_pass_left = ( (torch.sin(f_times_t_high) - torch.sin(f_times_t_low)) / (self.n_ / 2) ) * self.window_ # Central element of the filter band_pass_center = 2 * band.view(-1, 1) # Right part of the filter (sinc filters are symmetric) band_pass_right = torch.flip(band_pass_left, dims=[1]) # Combining left, central, and right part of the filter band_pass = torch.cat( [band_pass_left, band_pass_center, band_pass_right], dim=1 ) # Amplitude normalization band_pass = band_pass / (2 * band[:, None]) # Setting up the filter coefficients filters = band_pass.view(self.out_channels, 1, self.kernel_size) return filters def _init_sinc_conv(self): """Initializes the parameters of the sinc_conv layer.""" # Initialize filterbanks such that they are equally spaced in Mel scale high_hz = self.sample_rate / 2 - (self.min_low_hz + self.min_band_hz) mel = torch.linspace( self._to_mel(self.min_low_hz), self._to_mel(high_hz), self.out_channels + 1, ) hz = self._to_hz(mel) # Filter lower frequency and bands self.low_hz_ = hz[:-1].unsqueeze(1) self.band_hz_ = (hz[1:] - hz[:-1]).unsqueeze(1) # Maiking freq and bands learnable self.low_hz_ = nn.Parameter(self.low_hz_) self.band_hz_ = nn.Parameter(self.band_hz_) # Hamming window n_lin = torch.linspace( 0, (self.kernel_size / 2) - 1, steps=int((self.kernel_size / 2)) ) self.window_ = 0.54 - 0.46 * torch.cos( 2 * math.pi * n_lin / self.kernel_size ) # Time axis (only half is needed due to symmetry) n = (self.kernel_size - 1) / 2.0 self.n_ = ( 2 * math.pi * torch.arange(-n, 0).view(1, -1) / self.sample_rate ) def _to_mel(self, hz): """Converts frequency in Hz to the mel scale.""" return 2595 * np.log10(1 + hz / 700) def _to_hz(self, mel): """Converts frequency in the mel scale to Hz.""" return 700 * (10 ** (mel / 2595) - 1) def _manage_padding( self, x, kernel_size: int, dilation: int, stride: int, ): """This function performs zero-padding on the time axis such that their lengths is unchanged after the convolution. Arguments --------- x : torch.Tensor Input tensor. kernel_size : int Size of kernel. dilation : int Dilation used. stride : int Stride. """ # Detecting input shape L_in = self.in_channels # Time padding padding = get_padding_elem(L_in, stride, kernel_size, dilation) # Applying padding x = F.pad(x, padding, mode=self.padding_mode) return x
[docs] class Conv1d(nn.Module): """This function implements 1d convolution. Arguments --------- out_channels : int It is the number of output channels. kernel_size : int Kernel size of the convolutional filters. input_shape : tuple The shape of the input. Alternatively use ``in_channels``. in_channels : int The number of input channels. Alternatively use ``input_shape``. stride : int Stride factor of the convolutional filters. When the stride factor > 1, a decimation in time is performed. dilation : int Dilation factor of the convolutional filters. padding : str (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is the same as the input shape. "causal" results in causal (dilated) convolutions. groups: int Number of blocked connections from input channels to output channels. padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. skip_transpose : bool If False, uses batch x time x channel convention of speechbrain. If True, uses batch x channel x time convention. weight_norm : bool If True, use weight normalization, to be removed with self.remove_weight_norm() at inference conv_init : str Weight initialization for the convolution network default_padding: str or int This sets the default padding mode that will be used by the pytorch Conv1d backend. Example ------- >>> inp_tensor = torch.rand([10, 40, 16]) >>> cnn_1d = Conv1d( ... input_shape=inp_tensor.shape, out_channels=8, kernel_size=5 ... ) >>> out_tensor = cnn_1d(inp_tensor) >>> out_tensor.shape torch.Size([10, 40, 8]) """ def __init__( self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=1, dilation=1, padding="same", groups=1, bias=True, padding_mode="reflect", skip_transpose=False, weight_norm=False, conv_init=None, default_padding=0, ): super().__init__() self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.padding_mode = padding_mode self.unsqueeze = False self.skip_transpose = skip_transpose if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input_shape(input_shape) self.in_channels = in_channels self.conv = nn.Conv1d( in_channels, out_channels, self.kernel_size, stride=self.stride, dilation=self.dilation, padding=default_padding, groups=groups, bias=bias, ) if conv_init == "kaiming": nn.init.kaiming_normal_(self.conv.weight) elif conv_init == "zero": nn.init.zeros_(self.conv.weight) elif conv_init == "normal": nn.init.normal_(self.conv.weight, std=1e-6) if weight_norm: self.conv = nn.utils.weight_norm(self.conv)
[docs] def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 2d or 4d tensors are expected. """ if not self.skip_transpose: x = x.transpose(1, -1) if self.unsqueeze: x = x.unsqueeze(1) if self.padding == "same": x = self._manage_padding( x, self.kernel_size, self.dilation, self.stride ) elif self.padding == "causal": num_pad = (self.kernel_size - 1) * self.dilation x = F.pad(x, (num_pad, 0)) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same', 'valid' or 'causal'. Got " + self.padding ) wx = self.conv(x) if self.unsqueeze: wx = wx.squeeze(1) if not self.skip_transpose: wx = wx.transpose(1, -1) return wx
def _manage_padding( self, x, kernel_size: int, dilation: int, stride: int, ): """This function performs zero-padding on the time axis such that their lengths is unchanged after the convolution. Arguments --------- x : torch.Tensor Input tensor. kernel_size : int Size of kernel. dilation : int Dilation used. stride : int Stride. """ # Detecting input shape L_in = self.in_channels # Time padding padding = get_padding_elem(L_in, stride, kernel_size, dilation) # Applying padding x = F.pad(x, padding, mode=self.padding_mode) return x def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 2: self.unsqueeze = True in_channels = 1 elif self.skip_transpose: in_channels = shape[1] elif len(shape) == 3: in_channels = shape[2] else: raise ValueError( "conv1d expects 2d, 3d inputs. Got " + str(len(shape)) ) # Kernel size must be odd if not self.padding == "valid" and self.kernel_size % 2 == 0: raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) return in_channels
[docs] def remove_weight_norm(self): """Removes weight normalization at inference if used during training.""" self.conv = nn.utils.remove_weight_norm(self.conv)
[docs] class Conv2d(nn.Module): """This function implements 2d convolution. Arguments --------- out_channels : int It is the number of output channels. kernel_size : tuple Kernel size of the 2d convolutional filters over time and frequency axis. input_shape : tuple The shape of the input. Alternatively use ``in_channels``. in_channels : int The number of input channels. Alternatively use ``input_shape``. stride: int Stride factor of the 2d convolutional filters over time and frequency axis. dilation : int Dilation factor of the 2d convolutional filters over time and frequency axis. padding : str (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is same as input shape. If "causal" then proper padding is inserted to simulate causal convolution on the first spatial dimension. (spatial dim 1 is dim 3 for both skip_transpose=False and skip_transpose=True) padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. groups : int This option specifies the convolutional groups. See torch.nn documentation for more information. bias : bool If True, the additive bias b is adopted. max_norm: float kernel max-norm. swap: bool If True, the convolution is done with the format (B, C, W, H). If False, the convolution is dine with (B, H, W, C). Active only if skip_transpose is False. skip_transpose : bool If False, uses batch x spatial.dim2 x spatial.dim1 x channel convention of speechbrain. If True, uses batch x channel x spatial.dim1 x spatial.dim2 convention. weight_norm : bool If True, use weight normalization, to be removed with self.remove_weight_norm() at inference conv_init : str Weight initialization for the convolution network Example ------- >>> inp_tensor = torch.rand([10, 40, 16, 8]) >>> cnn_2d = Conv2d( ... input_shape=inp_tensor.shape, out_channels=5, kernel_size=(7, 3) ... ) >>> out_tensor = cnn_2d(inp_tensor) >>> out_tensor.shape torch.Size([10, 40, 16, 5]) """ def __init__( self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=(1, 1), dilation=(1, 1), padding="same", groups=1, bias=True, padding_mode="reflect", max_norm=None, swap=False, skip_transpose=False, weight_norm=False, conv_init=None, ): super().__init__() # handle the case if some parameter is int if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if isinstance(stride, int): stride = (stride, stride) if isinstance(dilation, int): dilation = (dilation, dilation) self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.padding_mode = padding_mode self.unsqueeze = False self.max_norm = max_norm self.swap = swap self.skip_transpose = skip_transpose if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input(input_shape) self.in_channels = in_channels # Weights are initialized following pytorch approach self.conv = nn.Conv2d( self.in_channels, out_channels, self.kernel_size, stride=self.stride, padding=0, dilation=self.dilation, groups=groups, bias=bias, ) if conv_init == "kaiming": nn.init.kaiming_normal_(self.conv.weight) elif conv_init == "zero": nn.init.zeros_(self.conv.weight) if weight_norm: self.conv = nn.utils.weight_norm(self.conv)
[docs] def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 2d or 4d tensors are expected. """ if not self.skip_transpose: x = x.transpose(1, -1) if self.swap: x = x.transpose(-1, -2) if self.unsqueeze: x = x.unsqueeze(1) if self.padding == "same": x = self._manage_padding( x, self.kernel_size, self.dilation, self.stride ) elif self.padding == "causal": num_pad = (self.kernel_size[0] - 1) * self.dilation[1] x = F.pad(x, (0, 0, num_pad, 0)) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same','valid' or 'causal'. Got " + self.padding ) if self.max_norm is not None: self.conv.weight.data = torch.renorm( self.conv.weight.data, p=2, dim=0, maxnorm=self.max_norm ) wx = self.conv(x) if self.unsqueeze: wx = wx.squeeze(1) if not self.skip_transpose: wx = wx.transpose(1, -1) if self.swap: wx = wx.transpose(1, 2) return wx
def _manage_padding( self, x, kernel_size: Tuple[int, int], dilation: Tuple[int, int], stride: Tuple[int, int], ): """This function performs zero-padding on the time and frequency axes such that their lengths is unchanged after the convolution. Arguments --------- x : torch.Tensor kernel_size : int dilation : int stride: int """ # Detecting input shape L_in = self.in_channels # Time padding padding_time = get_padding_elem( L_in, stride[-1], kernel_size[-1], dilation[-1] ) padding_freq = get_padding_elem( L_in, stride[-2], kernel_size[-2], dilation[-2] ) padding = padding_time + padding_freq # Applying padding x = nn.functional.pad(x, padding, mode=self.padding_mode) return x def _check_input(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 3: self.unsqueeze = True in_channels = 1 elif len(shape) == 4: in_channels = shape[3] else: raise ValueError("Expected 3d or 4d inputs. Got " + len(shape)) # Kernel size must be odd if not self.padding == "valid" and ( self.kernel_size[0] % 2 == 0 or self.kernel_size[1] % 2 == 0 ): raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) return in_channels
[docs] def remove_weight_norm(self): """Removes weight normalization at inference if used during training.""" self.conv = nn.utils.remove_weight_norm(self.conv)
[docs] class ConvTranspose1d(nn.Module): """This class implements 1d transposed convolution with speechbrain. Transpose convolution is normally used to perform upsampling. Arguments --------- out_channels : int It is the number of output channels. kernel_size : int Kernel size of the convolutional filters. input_shape : tuple The shape of the input. Alternatively use ``in_channels``. in_channels : int The number of input channels. Alternatively use ``input_shape``. stride : int Stride factor of the convolutional filters. When the stride factor > 1, upsampling in time is performed. dilation : int Dilation factor of the convolutional filters. padding : str or int To have in output the target dimension, we suggest tuning the kernel size and the padding properly. We also support the following function to have some control over the padding and the corresponding ouput dimensionality. if "valid", no padding is applied if "same", padding amount is inferred so that the output size is closest to possible to input size. Note that for some kernel_size / stride combinations it is not possible to obtain the exact same size, but we return the closest possible size. if "factor", padding amount is inferred so that the output size is closest to inputsize*stride. Note that for some kernel_size / stride combinations it is not possible to obtain the exact size, but we return the closest possible size. if an integer value is entered, a custom padding is used. output_padding : int, Additional size added to one side of the output shape groups: int Number of blocked connections from input channels to output channels. Default: 1 bias: bool If True, adds a learnable bias to the output skip_transpose : bool If False, uses batch x time x channel convention of speechbrain. If True, uses batch x channel x time convention. weight_norm : bool If True, use weight normalization, to be removed with self.remove_weight_norm() at inference Example ------- >>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d >>> inp_tensor = torch.rand([10, 12, 40]) #[batch, time, fea] >>> convtranspose_1d = ConvTranspose1d( ... input_shape=inp_tensor.shape, out_channels=8, kernel_size=3, stride=2 ... ) >>> out_tensor = convtranspose_1d(inp_tensor) >>> out_tensor.shape torch.Size([10, 25, 8]) >>> # Combination of Conv1d and ConvTranspose1d >>> from speechbrain.nnet.CNN import Conv1d, ConvTranspose1d >>> signal = torch.tensor([1,100]) >>> signal = torch.rand([1,100]) #[batch, time] >>> conv1d = Conv1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2) >>> conv_out = conv1d(signal) >>> conv_t = ConvTranspose1d(input_shape=conv_out.shape, out_channels=1, kernel_size=3, stride=2, padding=1) >>> signal_rec = conv_t(conv_out, output_size=[100]) >>> signal_rec.shape torch.Size([1, 100]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding='same') >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 115]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='valid') >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 235]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=7, stride=2, padding='factor') >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 231]) >>> signal = torch.rand([1,115]) #[batch, time] >>> conv_t = ConvTranspose1d(input_shape=signal.shape, out_channels=1, kernel_size=3, stride=2, padding=10) >>> signal_rec = conv_t(signal) >>> signal_rec.shape torch.Size([1, 211]) """ def __init__( self, out_channels, kernel_size, input_shape=None, in_channels=None, stride=1, dilation=1, padding=0, output_padding=0, groups=1, bias=True, skip_transpose=False, weight_norm=False, ): super().__init__() self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.unsqueeze = False self.skip_transpose = skip_transpose if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input_shape(input_shape) if self.padding == "same": L_in = input_shape[-1] if skip_transpose else input_shape[1] padding_value = get_padding_elem_transposed( L_in, L_in, stride=stride, kernel_size=kernel_size, dilation=dilation, output_padding=output_padding, ) elif self.padding == "factor": L_in = input_shape[-1] if skip_transpose else input_shape[1] padding_value = get_padding_elem_transposed( L_in * stride, L_in, stride=stride, kernel_size=kernel_size, dilation=dilation, output_padding=output_padding, ) elif self.padding == "valid": padding_value = 0 elif type(self.padding) is int: padding_value = padding else: raise ValueError("Not supported padding type") self.conv = nn.ConvTranspose1d( in_channels, out_channels, self.kernel_size, stride=self.stride, dilation=self.dilation, padding=padding_value, groups=groups, bias=bias, ) if weight_norm: self.conv = nn.utils.weight_norm(self.conv)
[docs] def forward(self, x, output_size=None): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 2d or 4d tensors are expected. """ if not self.skip_transpose: x = x.transpose(1, -1) if self.unsqueeze: x = x.unsqueeze(1) wx = self.conv(x, output_size=output_size) if self.unsqueeze: wx = wx.squeeze(1) if not self.skip_transpose: wx = wx.transpose(1, -1) return wx
def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 2: self.unsqueeze = True in_channels = 1 elif self.skip_transpose: in_channels = shape[1] elif len(shape) == 3: in_channels = shape[2] else: raise ValueError( "conv1d expects 2d, 3d inputs. Got " + str(len(shape)) ) return in_channels
[docs] def remove_weight_norm(self): """Removes weight normalization at inference if used during training.""" self.conv = nn.utils.remove_weight_norm(self.conv)
[docs] class DepthwiseSeparableConv1d(nn.Module): """This class implements the depthwise separable 1d convolution. First, a channel-wise convolution is applied to the input Then, a point-wise convolution to project the input to output Arguments --------- out_channels : int It is the number of output channels. kernel_size : int Kernel size of the convolutional filters. input_shape : tuple Expected shape of the input. stride : int Stride factor of the convolutional filters. When the stride factor > 1, a decimation in time is performed. dilation : int Dilation factor of the convolutional filters. padding : str (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is the same as the input shape. "causal" results in causal (dilated) convolutions. padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. bias : bool If True, the additive bias b is adopted. Example ------- >>> inp = torch.randn([8, 120, 40]) >>> conv = DepthwiseSeparableConv1d(256, 3, input_shape=inp.shape) >>> out = conv(inp) >>> out.shape torch.Size([8, 120, 256]) """ def __init__( self, out_channels, kernel_size, input_shape, stride=1, dilation=1, padding="same", bias=True, ): super().__init__() assert len(input_shape) == 3, "input must be a 3d tensor" bz, time, chn = input_shape self.depthwise = Conv1d( chn, kernel_size, input_shape=input_shape, stride=stride, dilation=dilation, padding=padding, groups=chn, bias=bias, ) self.pointwise = Conv1d( out_channels, kernel_size=1, input_shape=input_shape, )
[docs] def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 3d tensors are expected. """ return self.pointwise(self.depthwise(x))
[docs] class DepthwiseSeparableConv2d(nn.Module): """This class implements the depthwise separable 2d convolution. First, a channel-wise convolution is applied to the input Then, a point-wise convolution to project the input to output Arguments --------- ut_channels : int It is the number of output channels. kernel_size : int Kernel size of the convolutional filters. stride : int Stride factor of the convolutional filters. When the stride factor > 1, a decimation in time is performed. dilation : int Dilation factor of the convolutional filters. padding : str (same, valid, causal). If "valid", no padding is performed. If "same" and stride is 1, output shape is the same as the input shape. "causal" results in causal (dilated) convolutions. padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. bias : bool If True, the additive bias b is adopted. Example ------- >>> inp = torch.randn([8, 120, 40, 1]) >>> conv = DepthwiseSeparableConv2d(256, (3, 3), input_shape=inp.shape) >>> out = conv(inp) >>> out.shape torch.Size([8, 120, 40, 256]) """ def __init__( self, out_channels, kernel_size, input_shape, stride=(1, 1), dilation=(1, 1), padding="same", bias=True, ): super().__init__() # handle the case if some parameter is int if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if isinstance(stride, int): stride = (stride, stride) if isinstance(dilation, int): dilation = (dilation, dilation) assert len(input_shape) in {3, 4}, "input must be a 3d or 4d tensor" self.unsqueeze = len(input_shape) == 3 bz, time, chn1, chn2 = input_shape self.depthwise = Conv2d( chn2, kernel_size, input_shape=input_shape, stride=stride, dilation=dilation, padding=padding, groups=chn2, bias=bias, ) self.pointwise = Conv2d( out_channels, kernel_size=(1, 1), input_shape=input_shape, )
[docs] def forward(self, x): """Returns the output of the convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. 3d tensors are expected. """ if self.unsqueeze: x = x.unsqueeze(1) out = self.pointwise(self.depthwise(x)) if self.unsqueeze: out = out.squeeze(1) return out
[docs] class GaborConv1d(nn.Module): """ This class implements 1D Gabor Convolutions from Neil Zeghidour, Olivier Teboul, F{\'e}lix de Chaumont Quitry & Marco Tagliasacchi, "LEAF: A LEARNABLE FRONTEND FOR AUDIO CLASSIFICATION", in Proc. of ICLR 2021 (https://arxiv.org/abs/2101.08596) Arguments --------- out_channels : int It is the number of output channels. kernel_size: int Kernel size of the convolutional filters. stride : int Stride factor of the convolutional filters. When the stride factor > 1, a decimation in time is performed. padding : str (same, valid). If "valid", no padding is performed. If "same" and stride is 1, output shape is the same as the input shape. padding_mode : str This flag specifies the type of padding. See torch.nn documentation for more information. sample_rate : int, Sampling rate of the input signals. It is only used for sinc_conv. min_freq : float Lowest possible frequency (in Hz) for a filter max_freq : float Highest possible frequency (in Hz) for a filter n_fft: int number of FFT bins for initialization normalize_energy: bool whether to normalize energy at initialization. Default is False bias : bool If True, the additive bias b is adopted. sort_filters: bool whether to sort filters by center frequencies. Default is False use_legacy_complex: bool If False, torch.complex64 data type is used for gabor impulse responses If True, computation is performed on two real-valued tensors skip_transpose: bool If False, uses batch x time x channel convention of speechbrain. If True, uses batch x channel x time convention. Example ------- >>> inp_tensor = torch.rand([10, 8000]) >>> # 401 corresponds to a window of 25 ms at 16000 kHz >>> gabor_conv = GaborConv1d( ... 40, kernel_size=401, stride=1, in_channels=1 ... ) >>> # >>> out_tensor = gabor_conv(inp_tensor) >>> out_tensor.shape torch.Size([10, 8000, 40]) """ def __init__( self, out_channels, kernel_size, stride, input_shape=None, in_channels=None, padding="same", padding_mode="constant", sample_rate=16000, min_freq=60.0, max_freq=None, n_fft=512, normalize_energy=False, bias=False, sort_filters=False, use_legacy_complex=False, skip_transpose=False, ): super(GaborConv1d, self).__init__() self.filters = out_channels // 2 self.kernel_size = kernel_size self.stride = stride self.padding = padding self.padding_mode = padding_mode self.sort_filters = sort_filters self.sample_rate = sample_rate self.min_freq = min_freq if max_freq is None: max_freq = sample_rate / 2 self.max_freq = max_freq self.n_fft = n_fft self.normalize_energy = normalize_energy self.use_legacy_complex = use_legacy_complex self.skip_transpose = skip_transpose if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input_shape(input_shape) self.kernel = nn.Parameter(self._initialize_kernel()) if bias: self.bias = torch.nn.Parameter(torch.ones(self.filters * 2,)) else: self.bias = None
[docs] def forward(self, x): """Returns the output of the Gabor convolution. Arguments --------- x : torch.Tensor (batch, time, channel) input to convolve. """ if not self.skip_transpose: x = x.transpose(1, -1) unsqueeze = x.ndim == 2 if unsqueeze: x = x.unsqueeze(1) kernel = self._gabor_constraint(self.kernel) if self.sort_filters: idxs = torch.argsort(kernel[:, 0]) kernel = kernel[idxs, :] filters = self._gabor_filters(kernel) if not self.use_legacy_complex: temp = torch.view_as_real(filters) real_filters = temp[:, :, 0] img_filters = temp[:, :, 1] else: real_filters = filters[:, :, 0] img_filters = filters[:, :, 1] stacked_filters = torch.cat( [real_filters.unsqueeze(1), img_filters.unsqueeze(1)], dim=1 ) stacked_filters = torch.reshape( stacked_filters, (2 * self.filters, self.kernel_size) ) stacked_filters = stacked_filters.unsqueeze(1) if self.padding == "same": x = self._manage_padding(x, self.kernel_size) elif self.padding == "valid": pass else: raise ValueError( "Padding must be 'same' or 'valid'. Got " + self.padding ) output = F.conv1d( x, stacked_filters, bias=self.bias, stride=self.stride, padding=0 ) if not self.skip_transpose: output = output.transpose(1, -1) return output
def _gabor_constraint(self, kernel_data): mu_lower = 0.0 mu_upper = math.pi sigma_lower = ( 4 * torch.sqrt( 2.0 * torch.log(torch.tensor(2.0, device=kernel_data.device)) ) / math.pi ) sigma_upper = ( self.kernel_size * torch.sqrt( 2.0 * torch.log(torch.tensor(2.0, device=kernel_data.device)) ) / math.pi ) clipped_mu = torch.clamp( kernel_data[:, 0], mu_lower, mu_upper ).unsqueeze(1) clipped_sigma = torch.clamp( kernel_data[:, 1], sigma_lower, sigma_upper ).unsqueeze(1) return torch.cat([clipped_mu, clipped_sigma], dim=-1) def _gabor_filters(self, kernel): t = torch.arange( -(self.kernel_size // 2), (self.kernel_size + 1) // 2, dtype=kernel.dtype, device=kernel.device, ) if not self.use_legacy_complex: return gabor_impulse_response( t, center=kernel[:, 0], fwhm=kernel[:, 1] ) else: return gabor_impulse_response_legacy_complex( t, center=kernel[:, 0], fwhm=kernel[:, 1] ) def _manage_padding(self, x, kernel_size): # this is the logic that gives correct shape that complies # with the original implementation at https://github.com/google-research/leaf-audio def get_padding_value(kernel_size): """Gets the number of elements to pad.""" kernel_sizes = (kernel_size,) from functools import reduce from operator import __add__ conv_padding = reduce( __add__, [ (k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in kernel_sizes[::-1] ], ) return conv_padding pad_value = get_padding_value(kernel_size) x = F.pad(x, pad_value, mode=self.padding_mode, value=0) return x def _mel_filters(self): def _mel_filters_areas(filters): peaks, _ = torch.max(filters, dim=1, keepdim=True) return ( peaks * (torch.sum((filters > 0).float(), dim=1, keepdim=True) + 2) * np.pi / self.n_fft ) mel_filters = torchaudio.functional.melscale_fbanks( n_freqs=self.n_fft // 2 + 1, f_min=self.min_freq, f_max=self.max_freq, n_mels=self.filters, sample_rate=self.sample_rate, ) mel_filters = mel_filters.transpose(1, 0) if self.normalize_energy: mel_filters = mel_filters / _mel_filters_areas(mel_filters) return mel_filters def _gabor_params_from_mels(self): coeff = torch.sqrt(2.0 * torch.log(torch.tensor(2.0))) * self.n_fft sqrt_filters = torch.sqrt(self._mel_filters()) center_frequencies = torch.argmax(sqrt_filters, dim=1) peaks, _ = torch.max(sqrt_filters, dim=1, keepdim=True) half_magnitudes = peaks / 2.0 fwhms = torch.sum((sqrt_filters >= half_magnitudes).float(), dim=1) output = torch.cat( [ (center_frequencies * 2 * np.pi / self.n_fft).unsqueeze(1), (coeff / (np.pi * fwhms)).unsqueeze(1), ], dim=-1, ) return output def _initialize_kernel(self): return self._gabor_params_from_mels() def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 2: in_channels = 1 elif len(shape) == 3: in_channels = 1 else: raise ValueError( "GaborConv1d expects 2d or 3d inputs. Got " + str(len(shape)) ) # Kernel size must be odd if self.kernel_size % 2 == 0: raise ValueError( "The field kernel size must be an odd number. Got %s." % (self.kernel_size) ) return in_channels
[docs] def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int): """This function computes the number of elements to add for zero-padding. Arguments --------- L_in : int stride: int kernel_size : int dilation : int """ if stride > 1: padding = [math.floor(kernel_size / 2), math.floor(kernel_size / 2)] else: L_out = ( math.floor((L_in - dilation * (kernel_size - 1) - 1) / stride) + 1 ) padding = [ math.floor((L_in - L_out) / 2), math.floor((L_in - L_out) / 2), ] return padding
[docs] def get_padding_elem_transposed( L_out: int, L_in: int, stride: int, kernel_size: int, dilation: int, output_padding: int, ): """This function computes the required padding size for transposed convolution Arguments --------- L_out : int L_in : int stride: int kernel_size : int dilation : int output_padding : int """ padding = -0.5 * ( L_out - (L_in - 1) * stride - dilation * (kernel_size - 1) - output_padding - 1 ) return int(padding)