speechbrain.lobes.models.huggingface_transformers.nllb module
This lobe enables the integration of huggingface pretrained NLLB models. Reference: https://arxiv.org/abs/2207.04672
Transformer from HuggingFace needs to be installed: https://huggingface.co/transformers/installation.html
- Authors
Ha Nguyen 2023
Summary
Classes:
This lobe enables the integration of HuggingFace and SpeechBrain pretrained NLLB models. |
Reference
- class speechbrain.lobes.models.huggingface_transformers.nllb.NLLB(source, save_path, freeze=True, target_lang='fra_Latn', decoder_only=True, share_input_output_embed=True)[source]
Bases:
mBART
This lobe enables the integration of HuggingFace and SpeechBrain pretrained NLLB models.
Source paper NLLB: https://arxiv.org/abs/2207.04672 Transformer from HuggingFace needs to be installed: https://huggingface.co/transformers/installation.html
The model is normally used as a text decoder of seq2seq models. It will download automatically the model from HuggingFace or use a local path.
For now, HuggingFace’s NLLB model can be loaded using the exact code for mBART model. For this reason, NLLB can be fine inheriting the mBART class.
- Parameters:
source (str) – HuggingFace hub name: e.g “facebook/nllb-200-1.3B”
save_path (str) – Path (dir) of the downloaded model.
freeze (bool (default: True)) – If True, the model is frozen. If False, the model will be trained alongside with the rest of the pipeline.
target_lang (str (default: fra_Latn (a.k.a French)) – The target language code according to NLLB model.
decoder_only (bool (default: True)) – If True, only take the decoder part (and/or the lm_head) of the model. This is useful in case one wants to couple a pre-trained speech encoder (e.g. wav2vec) with a text-based pre-trained decoder (e.g. mBART, NLLB).
share_input_output_embed (bool (default: True)) – If True, use the embedded layer as the lm_head.
Example
>>> import torch >>> src = torch.rand([10, 1, 1024]) >>> tgt = torch.LongTensor([[256057, 313, 25, 525, 773, 21525, 4004, 2]]) >>> model_hub = "facebook/nllb-200-distilled-600M" >>> save_path = "savedir" >>> model = NLLB(model_hub, save_path) >>> outputs = model(src, tgt)