Source code for speechbrain.utils.hpopt

"""Utilities for hyperparameter optimization.
This wrapper has an optional dependency on

 * Artem Ploujnikov 2021
import importlib
import logging
import json
import os
import speechbrain as sb
import sys

from datetime import datetime
from hyperpyyaml import load_hyperpyyaml

logger = logging.getLogger(__name__)

MODULE_ORION = "orion.client"
KEY_HPOPT = "hpopt"
KEY_HPOPT_MODE = "hpopt_mode"
KEY_TRIAL_ID = "trial_id"


_hpopt_modes = {}

[docs] def hpopt_mode(mode): """A decorator to register a reporter implementation for a hyperparameter optimization mode Arguments --------- mode: str the mode to register Returns ------- f: callable a callable function that registers and returns the reporter class Example ------- >>> @hpopt_mode("raw") ... class RawHyperparameterOptimizationReporter(HyperparameterOptimizationReporter): ... def __init__(self, *args, **kwargs): ... super().__init__( *args, **kwargs) ... def report_objective(self, result): ... objective = result[self.objective_key] ... print(f"Objective: {objective}") >>> reporter = get_reporter("raw", objective_key="error") >>> result = {"error": 1.2, "train_loss": 7.2} >>> reporter.report_objective(result) Objective: 1.2 """ def f(cls): """ "Call the function that registers and returns the reporter class""" _hpopt_modes[mode] = cls return cls return f
[docs] class HyperparameterOptimizationReporter: """A base class for hyperparameter fit reporters Arguments --------- objective_key: str the key from the result dictionary to be used as the objective """ def __init__(self, objective_key): self.objective_key = objective_key
[docs] def report_objective(self, result): """Reports the objective for hyperparameter optimization. Arguments --------- result: dict a dictionary with the run result. """ return NotImplemented
@property def is_available(self): """Determines whether this reporter is available""" return True @property def trial_id(self): """The unique ID of this trial (used for folder naming)""" return DEFAULT_TRIAL_ID
[docs] @hpopt_mode("generic") class GenericHyperparameterOptimizationReporter( HyperparameterOptimizationReporter ): """ A generic hyperparameter fit reporter that outputs the result as JSON to an arbitrary data stream, which may be read as a third-party tool Arguments --------- objective_key: str the key from the result dictionary to be used as the objective """ def __init__(self, reference_date=None, output=None, *args, **kwargs): super().__init__(*args, **kwargs) self.output = output or sys.stdout self.reference_date = reference_date self._trial_id = None
[docs] def report_objective(self, result): """Reports the objective for hyperparameter optimization. Arguments --------- result: dict a dictionary with the run result. Example ------- >>> reporter = GenericHyperparameterOptimizationReporter( ... objective_key="error" ... ) >>> result = {"error": 1.2, "train_loss": 7.2} >>> reporter.report_objective(result) {"error": 1.2, "train_loss": 7.2, "objective": 1.2} """ json.dump( dict(result, objective=result[self.objective_key]), self.output )
@property def trial_id(self): """The unique ID of this trial (used mainly for folder naming) Example ------- >>> import datetime >>> reporter = GenericHyperparameterOptimizationReporter( ... objective_key="error", ... reference_date=datetime.datetime(2021, 1, 3) ... ) >>> print(reporter.trial_id) 20210103000000000000 """ if self._trial_id is None: date = self.reference_date or self._trial_id = date.strftime(FORMAT_TIMESTAMP) return self._trial_id
[docs] @hpopt_mode("orion") class OrionHyperparameterOptimizationReporter( HyperparameterOptimizationReporter ): """A result reporter implementation based on Orion Arguments --------- orion_client: module the Python module for Orion """ def __init__(self, objective_key): super().__init__(objective_key=objective_key) self.orion_client = None self._trial_id = None self._check_client() def _check_client(self): try: self.orion_client = importlib.import_module(MODULE_ORION) except ImportError: logger.warning("Orion is not available") self.orion_client = None def _format_message(self, result): """Formats the log message for output Arguments --------- result: dict the result dictionary Returns ------- message: str a formatted message""" return ", ".join(f"{key} = {value}" for key, value in result.items())
[docs] def report_objective(self, result): """Reports the objective for hyperparameter optimization. Arguments --------- result: dict a dictionary with the run result. """ message = self._format_message(result)"Hyperparameter fit: {message}") if self.orion_client is not None: objective_value = result[self.objective_key] self.orion_client.report_objective(objective_value)
@property def trial_id(self): """The unique ID of this trial (used mainly for folder naming)""" if self._trial_id is None: self._trial_id = "-".join( os.getenv(name) or "" for name in ORION_TRIAL_ID_ENV ) return self._trial_id @property def is_available(self): """Determines if Orion is available. In order for it to be available, the library needs to be installed, and at least one of ORION_EXPERIMENT_NAME, ORION_EXPERIMENT_VERSION, ORION_TRIAL_ID needs to be set""" return self.orion_client is not None and any( os.getenv(name) for name in ORION_TRIAL_ID_ENV )
[docs] def get_reporter(mode, *args, **kwargs): """Attempts to get the reporter specified by the mode and reverts to a generic one if it is not available Arguments --------- mode: str a string identifier for a registered hyperparametr optimization mode, corresponding to a specific reporter instance Returns ------- reporter: HyperparameterOptimizationReporter a reporter instance Example ------- >>> reporter = get_reporter("generic", objective_key="error") >>> result = {"error": 3.4, "train_loss": 1.2} >>> reporter.report_objective(result) {"error": 3.4, "train_loss": 1.2, "objective": 3.4} """ reporter_cls = _hpopt_modes.get(mode) if reporter_cls is None: logger.warning( f"hpopt_mode {mode} is not supported, reverting to generic" ) reporter_cls = _hpopt_modes[DEFAULT_REPORTER] reporter = reporter_cls(*args, **kwargs) if not reporter.is_available: logger.warning("Reverting to a generic reporter") reporter_cls = _hpopt_modes[DEFAULT_REPORTER] reporter = reporter_cls(*args, **kwargs) return reporter
_context = {"current": None}
[docs] class HyperparameterOptimizationContext: """ A convenience context manager that makes it possible to conditionally enable hyperparameter optimization for a recipe. Arguments --------- reporter_args: list arguments to the reporter class reporter_kwargs: dict keyword arguments to the reporter class Example ------- >>> ctx = HyperparameterOptimizationContext( ... reporter_args=[], ... reporter_kwargs={"objective_key": "error"} ... ) """ def __init__(self, reporter_args=None, reporter_kwargs=None): self.reporter_args = reporter_args or [] self.reporter_kwargs = reporter_kwargs or {} self.reporter = None self.enabled = False self.result = {"objective": 0.0}
[docs] def parse_arguments( self, arg_list, pass_hpopt_args=None, pass_trial_id=True ): """A version of speechbrain.parse_arguments enhanced for hyperparameter optimization. If a parameter named 'hpopt' is provided, hyperparameter optimization and reporting will be enabled. If the parameter value corresponds to a filename, it will be read as a hyperpyaml file, and the contents will be added to "overrides". This is useful for cases where the values of certain hyperparameters are different during hyperparameter optimization vs during full training (e.g. number of epochs, saving files, etc) Arguments --------- arg_list: list a list of arguments pass_hpopt_args: enumerable forces arguments that are normally suppressed and only used for hyperparameter optimization to be passed into overrides pass_trial_id: bool whether the "trial_id" argument is passed through (enabled by default) Returns ------- param_file : str The location of the parameters file. run_opts : dict Run options, such as distributed, device, etc. overrides : dict The overrides to pass to ``load_hyperpyyaml``. Example ------- >>> ctx = HyperparameterOptimizationContext() >>> arg_list = ["hparams.yaml", "--x", "1", "--y", "2"] >>> hparams_file, run_opts, overrides = ctx.parse_arguments(arg_list) >>> print(f"File: {hparams_file}, Overrides: {overrides}") File: hparams.yaml, Overrides: {'x': 1, 'y': 2} """ if pass_hpopt_args is None: pass_hpopt_args = [] pass_hpopt_args = set(pass_hpopt_args) hparams_file, run_opts, overrides_yaml = sb.parse_arguments(arg_list) overrides = load_hyperpyyaml(overrides_yaml) if overrides_yaml else {} hpopt = overrides.get(KEY_HPOPT, False) hpopt_mode = overrides.get(KEY_HPOPT_MODE) or DEFAULT_REPORTER if hpopt: self.enabled = True self.reporter = get_reporter( hpopt_mode, *self.reporter_args, **self.reporter_kwargs ) if isinstance(hpopt, str) and os.path.exists(hpopt): with open(hpopt) as hpopt_file: trial_id = get_trial_id() hpopt_overrides = load_hyperpyyaml( hpopt_file, overrides={"trial_id": trial_id}, overrides_must_match=False, ) overrides = dict(hpopt_overrides, **overrides) keys = list(HPOPT_KEYS) if not pass_trial_id: keys.append(KEY_TRIAL_ID) for key in keys: if key in overrides and key not in pass_hpopt_args: del overrides[key] return hparams_file, run_opts, overrides
def __enter__(self): _context["current"] = self return self def __exit__(self, exc_type, exc_value, traceback): if exc_type is None and self.result is not None: reporter = self.reporter if not reporter: reporter = get_reporter( DEFAULT_REPORTER, *self.reporter_args, **self.reporter_kwargs, ) reporter.report_objective(self.result) _context["current"] = None
[docs] def hyperparameter_optimization(*args, **kwargs): """Initializes the hyperparameter optimization context Example ------- >>> import sys >>> with hyperparameter_optimization(objective_key="error", output=sys.stdout) as hp_ctx: ... result = {"error": 3.5, "train_loss": 2.1} ... report_result(result) ... {"error": 3.5, "train_loss": 2.1, "objective": 3.5} """ hpfit = HyperparameterOptimizationContext(args, kwargs) return hpfit
[docs] def report_result(result): """Reports the result using the current reporter, if available. When not in hyperparameter optimization mode, this function does nothing. Arguments --------- result: dict A dictionary of stats to be reported Example ------- >>> result = {"error": 3.5, "train_loss": 2.1} >>> report_result(result["error"]) """ ctx = _context["current"] if ctx: ctx.result = result
[docs] def get_trial_id(): """ Returns the ID of the current hyperparameter optimization trial, used primarily for the name of experiment folders. When using a context, the convention for identifying the trial ID will depend on the reporter being used. The default implementation returns a fixed value ("hpopt") Returns ------- trial_id: str the trial identifier Example ------- >>> trial_id = get_trial_id() >>> trial_id 'hpopt' """ ctx = _context["current"] trial_id = ctx.reporter.trial_id if ctx else DEFAULT_TRIAL_ID return trial_id