Source code for speechbrain.lobes.models.transformer.Conformer

"""Conformer implementation.

Authors
-------
* Jianyuan Zhong 2020
* Samuele Cornell 2021
* Sylvain de Langen 2023
"""

from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, List
import speechbrain as sb
import warnings


from speechbrain.nnet.attention import (
    RelPosMHAXL,
    MultiheadAttention,
    PositionalwiseFeedForward,
)
from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
from speechbrain.nnet.hypermixing import HyperMixing
from speechbrain.nnet.normalization import LayerNorm
from speechbrain.nnet.activations import Swish


[docs] @dataclass class ConformerEncoderLayerStreamingContext: """Streaming metadata and state for a `ConformerEncoderLayer`. The multi-head attention and Dynamic Chunk Convolution require to save some left context that gets inserted as left padding. See :class:`.ConvolutionModule` documentation for further details. """ mha_left_context_size: int """For this layer, specifies how many frames of inputs should be saved. Usually, the same value is used across all layers, but this can be modified. """ mha_left_context: Optional[torch.Tensor] = None """Left context to insert at the left of the current chunk as inputs to the multi-head attention. It can be `None` (if we're dealing with the first chunk) or `<= mha_left_context_size` because for the first few chunks, not enough left context may be available to pad. """ dcconv_left_context: Optional[torch.Tensor] = None """Left context to insert at the left of the convolution according to the Dynamic Chunk Convolution method. Unlike `mha_left_context`, here the amount of frames to keep is fixed and inferred from the kernel size of the convolution module. """
[docs] @dataclass class ConformerEncoderStreamingContext: """Streaming metadata and state for a `ConformerEncoder`.""" dynchunktrain_config: DynChunkTrainConfig """Dynamic Chunk Training configuration holding chunk size and context size information.""" layers: List[ConformerEncoderLayerStreamingContext] """Streaming metadata and state for each layer of the encoder."""
[docs] class ConvolutionModule(nn.Module): """This is an implementation of convolution module in Conformer. Arguments ---------- input_size : int The expected size of the input embedding dimension. kernel_size: int, optional Kernel size of non-bottleneck convolutional layer. bias: bool, optional Whether to use bias in the non-bottleneck conv layer. activation: torch.nn.Module Activation function used after non-bottleneck conv layer. dropout: float, optional Dropout rate. causal: bool, optional Whether the convolution should be causal or not. dilation: int, optional Dilation factor for the non bottleneck conv layer. Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> net = ConvolutionModule(512, 3) >>> output = net(x) >>> output.shape torch.Size([8, 60, 512]) """ def __init__( self, input_size, kernel_size=31, bias=True, activation=Swish, dropout=0.0, causal=False, dilation=1, ): super().__init__() self.kernel_size = kernel_size self.causal = causal self.dilation = dilation if self.causal: self.padding = (kernel_size - 1) * 2 ** (dilation - 1) else: self.padding = (kernel_size - 1) * 2 ** (dilation - 1) // 2 self.layer_norm = nn.LayerNorm(input_size) self.bottleneck = nn.Sequential( # pointwise nn.Conv1d( input_size, 2 * input_size, kernel_size=1, stride=1, bias=bias ), nn.GLU(dim=1), ) # depthwise self.conv = nn.Conv1d( input_size, input_size, kernel_size=kernel_size, stride=1, padding=self.padding, dilation=dilation, groups=input_size, bias=bias, ) # NOTE: there appears to be a mismatch compared to the Conformer paper: # I believe the first LayerNorm below is supposed to be a BatchNorm. self.after_conv = nn.Sequential( nn.LayerNorm(input_size), activation(), # pointwise nn.Linear(input_size, input_size, bias=bias), nn.Dropout(dropout), )
[docs] def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, dynchunktrain_config: Optional[DynChunkTrainConfig] = None, ): """Applies the convolution to an input tensor `x`. Arguments --------- x: torch.Tensor Input tensor to the convolution module. mask: torch.Tensor, optional Mask to be applied over the output of the convolution using `masked_fill_`, if specified. dynchunktrain_config: DynChunkTrainConfig, optional If specified, makes the module support Dynamic Chunk Convolution (DCConv) as implemented by `Dynamic Chunk Convolution for Unified Streaming and Non-Streaming Conformer ASR <https://www.amazon.science/publications/dynamic-chunk-convolution-for-unified-streaming-and-non-streaming-conformer-asr>`_. This allows masking future frames while preserving better accuracy than a fully causal convolution, at a small speed cost. This should only be used for training (or, if you know what you're doing, for masked evaluation at inference time), as the forward streaming function should be used at inference time. """ if dynchunktrain_config is not None: # chances are chunking+causal is unintended; i don't know where it # may make sense, but if it does to you, feel free to implement it. assert ( not self.causal ), "Chunked convolution not supported with causal padding" assert ( self.dilation == 1 ), "Current DynChunkTrain logic does not support dilation != 1" # in a causal convolution, which is not the case here, an output # frame would never be able to depend on a input frame from any # point in the future. # but with the dynamic chunk convolution, we instead use a "normal" # convolution but where, for any output frame, the future beyond the # "current" chunk gets masked. # see the paper linked in the documentation for details. chunk_size = dynchunktrain_config.chunk_size batch_size = x.shape[0] # determine the amount of padding we need to insert at the right of # the last chunk so that all chunks end up with the same size. if x.shape[1] % chunk_size != 0: final_right_padding = chunk_size - (x.shape[1] % chunk_size) else: final_right_padding = 0 # -> [batch_size, t, in_channels] out = self.layer_norm(x) # -> [batch_size, in_channels, t] for the CNN out = out.transpose(1, 2) # -> [batch_size, in_channels, t] (pointwise) out = self.bottleneck(out) # -> [batch_size, in_channels, lc+t+final_right_padding] out = F.pad(out, (self.padding, final_right_padding), value=0) # now, make chunks with left context. # as a recap to what the above padding and this unfold do, consider # each a/b/c letter represents a frame as part of chunks a, b, c. # consider a chunk size of 4 and a kernel size of 5 (padding=2): # # input seq: 00aaaabbbbcc00 # chunk #1: 00aaaa # chunk #2: aabbbb # chunk #3: bbcc00 # # a few remarks here: # - the left padding gets inserted early so that the unfold logic # works trivially # - the right 0-padding got inserted as the number of time steps # could not be evenly split in `chunk_size` chunks # -> [batch_size, in_channels, num_chunks, lc+chunk_size] out = out.unfold(2, size=chunk_size + self.padding, step=chunk_size) # as we manually disable padding in the convolution below, we insert # right 0-padding to the chunks, e.g. reusing the above example: # # chunk #1: 00aaaa00 # chunk #2: aabbbb00 # chunk #3: bbcc0000 # -> [batch_size, in_channels, num_chunks, lc+chunk_size+rpad] out = F.pad(out, (0, self.padding), value=0) # the transpose+flatten effectively flattens chunks into the batch # dimension to be processed into the time-wise convolution. the # chunks will later on be unflattened. # -> [batch_size, num_chunks, in_channels, lc+chunk_size+rpad] out = out.transpose(1, 2) # -> [batch_size * num_chunks, in_channels, lc+chunk_size+rpad] out = out.flatten(start_dim=0, end_dim=1) # TODO: experiment around reflect padding, which is difficult # because small chunks have too little time steps to reflect from # let's keep backwards compat by pointing at the weights from the # already declared Conv1d. # # still reusing the above example, the convolution will be applied, # with the padding truncated on both ends. the following example # shows the letter corresponding to the input frame on which the # convolution was centered. # # as you can see, the sum of lengths of all chunks is equal to our # input sequence length + `final_right_padding`. # # chunk #1: aaaa # chunk #2: bbbb # chunk #3: cc00 # -> [batch_size * num_chunks, out_channels, chunk_size] out = F.conv1d( out, weight=self.conv.weight, bias=self.conv.bias, stride=self.conv.stride, padding=0, dilation=self.conv.dilation, groups=self.conv.groups, ) # -> [batch_size * num_chunks, chunk_size, out_channels] out = out.transpose(1, 2) out = self.after_conv(out) # -> [batch_size, num_chunks, chunk_size, out_channels] out = torch.unflatten(out, dim=0, sizes=(batch_size, -1)) # -> [batch_size, t + final_right_padding, out_channels] out = torch.flatten(out, start_dim=1, end_dim=2) # -> [batch_size, t, out_channels] if final_right_padding > 0: out = out[:, :-final_right_padding, :] else: out = self.layer_norm(x) out = out.transpose(1, 2) out = self.bottleneck(out) out = self.conv(out) if self.causal: # chomp out = out[..., : -self.padding] out = out.transpose(1, 2) out = self.after_conv(out) if mask is not None: out.masked_fill_(mask, 0.0) return out
[docs] class ConformerEncoderLayer(nn.Module): """This is an implementation of Conformer encoder layer. Arguments ---------- d_model : int The expected size of the input embedding. d_ffn : int Hidden size of self-attention Feed Forward layer. nhead : int Number of attention heads. kernel_size : int, optional Kernel size of convolution model. kdim : int, optional Dimension of the key. vdim : int, optional Dimension of the value. activation: torch.nn.Module Activation function used in each Conformer layer. bias : bool, optional Whether convolution module. dropout : int, optional Dropout for the encoder. causal: bool, optional Whether the convolutions should be causal or not. attention_type: str, optional type of attention layer, e.g. regulaMHA for regular MultiHeadAttention. Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> pos_embs = torch.rand((1, 2*60-1, 512)) >>> net = ConformerEncoderLayer(d_ffn=512, nhead=8, d_model=512, kernel_size=3) >>> output = net(x, pos_embs=pos_embs) >>> output[0].shape torch.Size([8, 60, 512]) """ def __init__( self, d_model, d_ffn, nhead, kernel_size=31, kdim=None, vdim=None, activation=Swish, bias=True, dropout=0.0, causal=False, attention_type="RelPosMHAXL", ): super().__init__() if attention_type == "regularMHA": self.mha_layer = MultiheadAttention( nhead=nhead, d_model=d_model, dropout=dropout, kdim=kdim, vdim=vdim, ) elif attention_type == "RelPosMHAXL": # transformerXL style positional encoding self.mha_layer = RelPosMHAXL( num_heads=nhead, embed_dim=d_model, dropout=dropout, mask_pos_future=causal, ) elif attention_type == "hypermixing": self.mha_layer = HyperMixing( input_output_dim=d_model, hypernet_size=d_ffn, tied=False, num_heads=nhead, fix_tm_hidden_size=False, ) self.convolution_module = ConvolutionModule( d_model, kernel_size, bias, activation, dropout, causal=causal ) self.ffn_module1 = nn.Sequential( nn.LayerNorm(d_model), PositionalwiseFeedForward( d_ffn=d_ffn, input_size=d_model, dropout=dropout, activation=activation, ), nn.Dropout(dropout), ) self.ffn_module2 = nn.Sequential( nn.LayerNorm(d_model), PositionalwiseFeedForward( d_ffn=d_ffn, input_size=d_model, dropout=dropout, activation=activation, ), nn.Dropout(dropout), ) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.drop = nn.Dropout(dropout)
[docs] def forward( self, x, src_mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None, pos_embs: torch.Tensor = None, dynchunktrain_config: Optional[DynChunkTrainConfig] = None, ): """ Arguments ---------- src : torch.Tensor The sequence to the encoder layer. src_mask : torch.Tensor, optional The mask for the src sequence. src_key_padding_mask : torch.Tensor, optional The mask for the src keys per batch. pos_embs: torch.Tensor, torch.nn.Module, optional Module or tensor containing the input sequence positional embeddings dynchunktrain_config: Optional[DynChunkTrainConfig] Dynamic Chunk Training configuration object for streaming, specifically involved here to apply Dynamic Chunk Convolution to the convolution module. """ conv_mask: Optional[torch.Tensor] = None if src_key_padding_mask is not None: conv_mask = src_key_padding_mask.unsqueeze(-1) # ffn module x = x + 0.5 * self.ffn_module1(x) # muti-head attention module skip = x x = self.norm1(x) x, self_attn = self.mha_layer( x, x, x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask, pos_embs=pos_embs, ) x = x + skip # convolution module x = x + self.convolution_module( x, conv_mask, dynchunktrain_config=dynchunktrain_config ) # ffn module x = self.norm2(x + 0.5 * self.ffn_module2(x)) return x, self_attn
[docs] def forward_streaming( self, x, context: ConformerEncoderLayerStreamingContext, pos_embs: torch.Tensor = None, ): """Conformer layer streaming forward (typically for DynamicChunkTraining-trained models), which is to be used at inference time. Relies on a mutable context object as initialized by `make_streaming_context` that should be used across chunks. Invoked by `ConformerEncoder.forward_streaming`. Arguments --------- x : torch.Tensor Input tensor for this layer. Batching is supported as long as you keep the context consistent. context: ConformerEncoderStreamingContext Mutable streaming context; the same object should be passed across calls. pos_embs: torch.Tensor, optional Positional embeddings, if used.""" orig_len = x.shape[-2] # ffn module x = x + 0.5 * self.ffn_module1(x) # TODO: make the approach for MHA left context more efficient. # currently, this saves the inputs to the MHA. # the naive approach is suboptimal in a few ways, namely that the # outputs for this left padding is being re-computed even though we # discard them immediately after. # left pad `x` with our MHA left context if context.mha_left_context is not None: x = torch.cat((context.mha_left_context, x), dim=1) # compute new MHA left context for the next call to our function if context.mha_left_context_size > 0: context.mha_left_context = x[ ..., -context.mha_left_context_size :, : ] # multi-head attention module skip = x x = self.norm1(x) x, self_attn = self.mha_layer( x, x, x, attn_mask=None, key_padding_mask=None, pos_embs=pos_embs, ) x = x + skip # truncate outputs corresponding to the MHA left context (we only care # about our chunk's outputs); see above to-do x = x[..., -orig_len:, :] if context.dcconv_left_context is not None: x = torch.cat((context.dcconv_left_context, x), dim=1) # compute new DCConv left context for the next call to our function context.dcconv_left_context = x[ ..., -self.convolution_module.padding :, : ] # convolution module x = x + self.convolution_module(x) # truncate outputs corresponding to the DCConv left context x = x[..., -orig_len:, :] # ffn module x = self.norm2(x + 0.5 * self.ffn_module2(x)) return x, self_attn
[docs] def make_streaming_context(self, mha_left_context_size: int): """Creates a blank streaming context for this encoding layer. Arguments --------- mha_left_context_size : int How many left frames should be saved and used as left context to the current chunk when streaming """ return ConformerEncoderLayerStreamingContext( mha_left_context_size=mha_left_context_size )
[docs] class ConformerEncoder(nn.Module): """This class implements the Conformer encoder. Arguments --------- num_layers : int Number of layers. d_model : int Embedding dimension size. d_ffn : int Hidden size of self-attention Feed Forward layer. nhead : int Number of attention heads. kernel_size : int, optional Kernel size of convolution model. kdim : int, optional Dimension of the key. vdim : int, optional Dimension of the value. activation: torch.nn.Module Activation function used in each Confomer layer. bias : bool, optional Whether convolution module. dropout : int, optional Dropout for the encoder. causal: bool, optional Whether the convolutions should be causal or not. attention_type: str, optional type of attention layer, e.g. regulaMHA for regular MultiHeadAttention. Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> pos_emb = torch.rand((1, 2*60-1, 512)) >>> net = ConformerEncoder(1, 512, 512, 8) >>> output, _ = net(x, pos_embs=pos_emb) >>> output.shape torch.Size([8, 60, 512]) """ def __init__( self, num_layers, d_model, d_ffn, nhead, kernel_size=31, kdim=None, vdim=None, activation=Swish, bias=True, dropout=0.0, causal=False, attention_type="RelPosMHAXL", ): super().__init__() self.layers = torch.nn.ModuleList( [ ConformerEncoderLayer( d_ffn=d_ffn, nhead=nhead, d_model=d_model, kdim=kdim, vdim=vdim, dropout=dropout, activation=activation, kernel_size=kernel_size, bias=bias, causal=causal, attention_type=attention_type, ) for i in range(num_layers) ] ) self.norm = LayerNorm(d_model, eps=1e-6) self.attention_type = attention_type
[docs] def forward( self, src, src_mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None, pos_embs: Optional[torch.Tensor] = None, dynchunktrain_config: Optional[DynChunkTrainConfig] = None, ): """ Arguments ---------- src : torch.Tensor The sequence to the encoder layer. src_mask : torch.Tensor, optional The mask for the src sequence. src_key_padding_mask : torch.Tensor, optional The mask for the src keys per batch. pos_embs: torch.Tensor, torch.nn.Module, Module or tensor containing the input sequence positional embeddings If custom pos_embs are given it needs to have the shape (1, 2*S-1, E) where S is the sequence length, and E is the embedding dimension. dynchunktrain_config: Optional[DynChunkTrainConfig] Dynamic Chunk Training configuration object for streaming, specifically involved here to apply Dynamic Chunk Convolution to the convolution module. """ if self.attention_type == "RelPosMHAXL": if pos_embs is None: raise ValueError( "The chosen attention type for the Conformer is RelPosMHAXL. For this attention type, the positional embeddings are mandatory" ) output = src attention_lst = [] for enc_layer in self.layers: output, attention = enc_layer( output, src_mask=src_mask, src_key_padding_mask=src_key_padding_mask, pos_embs=pos_embs, dynchunktrain_config=dynchunktrain_config, ) attention_lst.append(attention) output = self.norm(output) return output, attention_lst
[docs] def forward_streaming( self, src: torch.Tensor, context: ConformerEncoderStreamingContext, pos_embs: Optional[torch.Tensor] = None, ): """Conformer streaming forward (typically for DynamicChunkTraining-trained models), which is to be used at inference time. Relies on a mutable context object as initialized by `make_streaming_context` that should be used across chunks. Arguments --------- src : torch.Tensor Input tensor. Batching is supported as long as you keep the context consistent. context: ConformerEncoderStreamingContext Mutable streaming context; the same object should be passed across calls. pos_embs: torch.Tensor, optional Positional embeddings, if used.""" if self.attention_type == "RelPosMHAXL": if pos_embs is None: raise ValueError( "The chosen attention type for the Conformer is RelPosMHAXL. For this attention type, the positional embeddings are mandatory" ) output = src attention_lst = [] for i, enc_layer in enumerate(self.layers): output, attention = enc_layer.forward_streaming( output, pos_embs=pos_embs, context=context.layers[i] ) attention_lst.append(attention) output = self.norm(output) return output, attention_lst
[docs] def make_streaming_context(self, dynchunktrain_config: DynChunkTrainConfig): """Creates a blank streaming context for the encoder. Arguments --------- dynchunktrain_config: Optional[DynChunkTrainConfig] Dynamic Chunk Training configuration object for streaming mha_left_context_size : int How many left frames should be saved and used as left context to the current chunk when streaming. This value is replicated across all layers. """ return ConformerEncoderStreamingContext( dynchunktrain_config=dynchunktrain_config, layers=[ layer.make_streaming_context( mha_left_context_size=dynchunktrain_config.left_context_size_frames() ) for layer in self.layers ], )
[docs] class ConformerDecoderLayer(nn.Module): """This is an implementation of Conformer encoder layer. Arguments ---------- d_model : int The expected size of the input embedding. d_ffn : int Hidden size of self-attention Feed Forward layer. nhead : int Number of attention heads. kernel_size : int, optional Kernel size of convolution model. kdim : int, optional Dimension of the key. vdim : int, optional Dimension of the value. activation: torch.nn.Module, optional Activation function used in each Conformer layer. bias : bool, optional Whether convolution module. dropout : int, optional Dropout for the encoder. causal: bool, optional Whether the convolutions should be causal or not. attention_type: str, optional type of attention layer, e.g. regulaMHA for regular MultiHeadAttention. Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> pos_embs = torch.rand((1, 2*60-1, 512)) >>> net = ConformerEncoderLayer(d_ffn=512, nhead=8, d_model=512, kernel_size=3) >>> output = net(x, pos_embs=pos_embs) >>> output[0].shape torch.Size([8, 60, 512]) """ def __init__( self, d_model, d_ffn, nhead, kernel_size, kdim=None, vdim=None, activation=Swish, bias=True, dropout=0.0, causal=True, attention_type="RelPosMHAXL", ): super().__init__() if not causal: warnings.warn( "Decoder is not causal, in most applications it should be causal, you have been warned !" ) if attention_type == "regularMHA": self.mha_layer = MultiheadAttention( nhead=nhead, d_model=d_model, dropout=dropout, kdim=kdim, vdim=vdim, ) elif attention_type == "RelPosMHAXL": # transformerXL style positional encoding self.mha_layer = RelPosMHAXL( num_heads=nhead, embed_dim=d_model, dropout=dropout, mask_pos_future=causal, ) self.convolution_module = ConvolutionModule( d_model, kernel_size, bias, activation, dropout, causal=causal ) self.ffn_module1 = nn.Sequential( nn.LayerNorm(d_model), PositionalwiseFeedForward( d_ffn=d_ffn, input_size=d_model, dropout=dropout, activation=activation, ), nn.Dropout(dropout), ) self.ffn_module2 = nn.Sequential( nn.LayerNorm(d_model), PositionalwiseFeedForward( d_ffn=d_ffn, input_size=d_model, dropout=dropout, activation=activation, ), nn.Dropout(dropout), ) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.drop = nn.Dropout(dropout)
[docs] def forward( self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos_embs_tgt=None, pos_embs_src=None, ): """ Arguments ---------- tgt: torch.Tensor The sequence to the decoder layer. memory: torch.Tensor The sequence from the last layer of the encoder. tgt_mask: torch.Tensor, optional, optional The mask for the tgt sequence. memory_mask: torch.Tensor, optional The mask for the memory sequence. tgt_key_padding_mask : torch.Tensor, optional The mask for the tgt keys per batch. memory_key_padding_mask : torch.Tensor, optional The mask for the memory keys per batch. pos_emb_tgt: torch.Tensor, torch.nn.Module, optional Module or tensor containing the target sequence positional embeddings for each attention layer. pos_embs_src: torch.Tensor, torch.nn.Module, optional Module or tensor containing the source sequence positional embeddings for each attention layer. """ # ffn module tgt = tgt + 0.5 * self.ffn_module1(tgt) # muti-head attention module skip = tgt x = self.norm1(tgt) x, self_attn = self.mha_layer( x, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, pos_embs=pos_embs_src, ) x = x + skip # convolution module x = x + self.convolution_module(x) # ffn module x = self.norm2(x + 0.5 * self.ffn_module2(x)) return x, self_attn, self_attn
[docs] class ConformerDecoder(nn.Module): """This class implements the Transformer decoder. Arguments ---------- num_layers: int Number of layers. nhead: int Number of attention heads. d_ffn: int Hidden size of self-attention Feed Forward layer. d_model: int Embedding dimension size. kdim: int, optional Dimension for key. vdim: int, optional Dimension for value. dropout: float, optional Dropout rate. activation: torch.nn.Module, optional Activation function used after non-bottleneck conv layer. kernel_size : int, optional Kernel size of convolutional layer. bias : bool, optional Whether convolution module. causal: bool, optional Whether the convolutions should be causal or not. attention_type: str, optional type of attention layer, e.g. regulaMHA for regular MultiHeadAttention. Example ------- >>> src = torch.rand((8, 60, 512)) >>> tgt = torch.rand((8, 60, 512)) >>> net = ConformerDecoder(1, 8, 1024, 512, attention_type="regularMHA") >>> output, _, _ = net(tgt, src) >>> output.shape torch.Size([8, 60, 512]) """ def __init__( self, num_layers, nhead, d_ffn, d_model, kdim=None, vdim=None, dropout=0.0, activation=Swish, kernel_size=3, bias=True, causal=True, attention_type="RelPosMHAXL", ): super().__init__() self.layers = torch.nn.ModuleList( [ ConformerDecoderLayer( d_ffn=d_ffn, nhead=nhead, d_model=d_model, kdim=kdim, vdim=vdim, dropout=dropout, activation=activation, kernel_size=kernel_size, bias=bias, causal=causal, attention_type=attention_type, ) for _ in range(num_layers) ] ) self.norm = sb.nnet.normalization.LayerNorm(d_model, eps=1e-6)
[docs] def forward( self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, pos_embs_tgt=None, pos_embs_src=None, ): """ Arguments ---------- tgt: torch.Tensor The sequence to the decoder layer. memory: torch.Tensor The sequence from the last layer of the encoder. tgt_mask: torch.Tensor, optional, optional The mask for the tgt sequence. memory_mask: torch.Tensor, optional The mask for the memory sequence. tgt_key_padding_mask : torch.Tensor, optional The mask for the tgt keys per batch. memory_key_padding_mask : torch.Tensor, optional The mask for the memory keys per batch. pos_emb_tgt: torch.Tensor, torch.nn.Module, optional Module or tensor containing the target sequence positional embeddings for each attention layer. pos_embs_src: torch.Tensor, torch.nn.Module, optional Module or tensor containing the source sequence positional embeddings for each attention layer. """ output = tgt self_attns, multihead_attns = [], [] for dec_layer in self.layers: output, self_attn, multihead_attn = dec_layer( output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos_embs_tgt=pos_embs_tgt, pos_embs_src=pos_embs_src, ) self_attns.append(self_attn) multihead_attns.append(multihead_attn) output = self.norm(output) return output, self_attns, multihead_attns