Source code for speechbrain.lobes.features

"""Basic feature pipelines.

Authors
 * Mirco Ravanelli 2020
 * Peter Plantinga 2020
 * Sarthak Yadav 2020
 * Sylvain de Langen 2024
"""

from dataclasses import dataclass
from functools import partial
from typing import Optional

import torch

from speechbrain.nnet.CNN import GaborConv1d
from speechbrain.nnet.normalization import PCEN
from speechbrain.nnet.pooling import GaussianLowpassPooling
from speechbrain.processing.features import (
    DCT,
    STFT,
    ContextWindow,
    Deltas,
    Filterbank,
    spectral_magnitude,
)
from speechbrain.processing.vocal_features import (
    PERIODIC_NEIGHBORS,
    compute_autocorr_features,
    compute_gne,
    compute_periodic_features,
    compute_spectral_features,
)
from speechbrain.utils.autocast import fwd_default_precision
from speechbrain.utils.filter_analysis import FilterProperties


[docs] class Fbank(torch.nn.Module): """Generate features for input to the speech pipeline. Arguments --------- deltas : bool (default: False) Whether or not to append derivatives and second derivatives to the features. context : bool (default: False) Whether or not to append forward and backward contexts to the features. requires_grad : bool (default: False) Whether to allow parameters (i.e. fbank centers and spreads) to update during training. sample_rate : int (default: 160000) Sampling rate for the input waveforms. f_min : int (default: 0) Lowest frequency for the Mel filters. f_max : int (default: None) Highest frequency for the Mel filters. Note that if f_max is not specified it will be set to sample_rate // 2. n_fft : int (default: 400) Number of samples to use in each stft. n_mels : int (default: 40) Number of Mel filters. filter_shape : str (default: triangular) Shape of the filters ('triangular', 'rectangular', 'gaussian'). param_change_factor : float (default: 1.0) If freeze=False, this parameter affects the speed at which the filter parameters (i.e., central_freqs and bands) can be changed. When high (e.g., param_change_factor=1) the filters change a lot during training. When low (e.g. param_change_factor=0.1) the filter parameters are more stable during training. param_rand_factor : float (default: 0.0) This parameter can be used to randomly change the filter parameters (i.e, central frequencies and bands) during training. It is thus a sort of regularization. param_rand_factor=0 does not affect, while param_rand_factor=0.15 allows random variations within +-15% of the standard values of the filter parameters (e.g., if the central freq is 100 Hz, we can randomly change it from 85 Hz to 115 Hz). left_frames : int (default: 5) Number of frames of left context to add. right_frames : int (default: 5) Number of frames of right context to add. win_length : float (default: 25) Length (in ms) of the sliding window used to compute the STFT. hop_length : float (default: 10) Length (in ms) of the hop of the sliding window used to compute the STFT. Example ------- >>> import torch >>> inputs = torch.randn([10, 16000]) >>> feature_maker = Fbank() >>> feats = feature_maker(inputs) >>> feats.shape torch.Size([10, 101, 40]) """ def __init__( self, deltas=False, context=False, requires_grad=False, sample_rate=16000, f_min=0, f_max=None, n_fft=400, n_mels=40, filter_shape="triangular", param_change_factor=1.0, param_rand_factor=0.0, left_frames=5, right_frames=5, win_length=25, hop_length=10, ): super().__init__() self.deltas = deltas self.context = context self.requires_grad = requires_grad if f_max is None: f_max = sample_rate // 2 self.compute_STFT = STFT( sample_rate=sample_rate, n_fft=n_fft, win_length=win_length, hop_length=hop_length, ) self.compute_fbanks = Filterbank( sample_rate=sample_rate, n_fft=n_fft, n_mels=n_mels, f_min=f_min, f_max=f_max, freeze=not requires_grad, filter_shape=filter_shape, param_change_factor=param_change_factor, param_rand_factor=param_rand_factor, ) self.compute_deltas = Deltas(input_size=n_mels) self.context_window = ContextWindow( left_frames=left_frames, right_frames=right_frames, )
[docs] @fwd_default_precision(cast_inputs=torch.float32) def forward(self, wav): """Returns a set of features generated from the input waveforms. Arguments --------- wav : torch.Tensor A batch of audio signals to transform to features. Returns ------- fbanks : torch.Tensor """ STFT = self.compute_STFT(wav) mag = spectral_magnitude(STFT) fbanks = self.compute_fbanks(mag) if self.deltas: delta1 = self.compute_deltas(fbanks) delta2 = self.compute_deltas(delta1) fbanks = torch.cat([fbanks, delta1, delta2], dim=2) if self.context: fbanks = self.context_window(fbanks) return fbanks
[docs] def get_filter_properties(self) -> FilterProperties: # only the STFT affects the FilterProperties of the Fbank return self.compute_STFT.get_filter_properties()
[docs] class MFCC(torch.nn.Module): """Generate features for input to the speech pipeline. Arguments --------- deltas : bool (default: True) Whether or not to append derivatives and second derivatives to the features. context : bool (default: True) Whether or not to append forward and backward contexts to the features. requires_grad : bool (default: False) Whether to allow parameters (i.e. fbank centers and spreads) to update during training. sample_rate : int (default: 16000) Sampling rate for the input waveforms. f_min : int (default: 0) Lowest frequency for the Mel filters. f_max : int (default: None) Highest frequency for the Mel filters. Note that if f_max is not specified it will be set to sample_rate // 2. n_fft : int (default: 400) Number of samples to use in each stft. n_mels : int (default: 23) Number of filters to use for creating filterbank. n_mfcc : int (default: 20) Number of output coefficients filter_shape : str (default 'triangular') Shape of the filters ('triangular', 'rectangular', 'gaussian'). param_change_factor: bool (default 1.0) If freeze=False, this parameter affects the speed at which the filter parameters (i.e., central_freqs and bands) can be changed. When high (e.g., param_change_factor=1) the filters change a lot during training. When low (e.g. param_change_factor=0.1) the filter parameters are more stable during training. param_rand_factor: float (default 0.0) This parameter can be used to randomly change the filter parameters (i.e, central frequencies and bands) during training. It is thus a sort of regularization. param_rand_factor=0 does not affect, while param_rand_factor=0.15 allows random variations within +-15% of the standard values of the filter parameters (e.g., if the central freq is 100 Hz, we can randomly change it from 85 Hz to 115 Hz). left_frames : int (default 5) Number of frames of left context to add. right_frames : int (default 5) Number of frames of right context to add. win_length : float (default: 25) Length (in ms) of the sliding window used to compute the STFT. hop_length : float (default: 10) Length (in ms) of the hop of the sliding window used to compute the STFT. Example ------- >>> import torch >>> inputs = torch.randn([10, 16000]) >>> feature_maker = MFCC() >>> feats = feature_maker(inputs) >>> feats.shape torch.Size([10, 101, 660]) """ def __init__( self, deltas=True, context=True, requires_grad=False, sample_rate=16000, f_min=0, f_max=None, n_fft=400, n_mels=23, n_mfcc=20, filter_shape="triangular", param_change_factor=1.0, param_rand_factor=0.0, left_frames=5, right_frames=5, win_length=25, hop_length=10, ): super().__init__() self.deltas = deltas self.context = context self.requires_grad = requires_grad if f_max is None: f_max = sample_rate // 2 self.compute_STFT = STFT( sample_rate=sample_rate, n_fft=n_fft, win_length=win_length, hop_length=hop_length, ) self.compute_fbanks = Filterbank( sample_rate=sample_rate, n_fft=n_fft, n_mels=n_mels, f_min=f_min, f_max=f_max, freeze=not requires_grad, filter_shape=filter_shape, param_change_factor=param_change_factor, param_rand_factor=param_rand_factor, ) self.compute_dct = DCT(input_size=n_mels, n_out=n_mfcc) self.compute_deltas = Deltas(input_size=n_mfcc) self.context_window = ContextWindow( left_frames=left_frames, right_frames=right_frames, )
[docs] @fwd_default_precision(cast_inputs=torch.float32) def forward(self, wav): """Returns a set of mfccs generated from the input waveforms. Arguments --------- wav : torch.Tensor A batch of audio signals to transform to features. Returns ------- mfccs : torch.Tensor """ STFT = self.compute_STFT(wav) mag = spectral_magnitude(STFT) fbanks = self.compute_fbanks(mag) mfccs = self.compute_dct(fbanks) if self.deltas: delta1 = self.compute_deltas(mfccs) delta2 = self.compute_deltas(delta1) mfccs = torch.cat([mfccs, delta1, delta2], dim=2) if self.context: mfccs = self.context_window(mfccs) return mfccs
[docs] class Leaf(torch.nn.Module): """ This class implements the LEAF audio frontend from Neil Zeghidour, Olivier Teboul, F{\'e}lix de Chaumont Quitry & Marco Tagliasacchi, "LEAF: A LEARNABLE FRONTEND FOR AUDIO CLASSIFICATION", in Proc. of ICLR 2021 (https://arxiv.org/abs/2101.08596) Arguments --------- out_channels : int It is the number of output channels. window_len: float length of filter window in milliseconds window_stride : float Stride factor of the filters in milliseconds sample_rate : int, Sampling rate of the input signals. It is only used for sinc_conv. input_shape : tuple Expected shape of the inputs. in_channels : int Expected number of input channels. min_freq : float Lowest possible frequency (in Hz) for a filter max_freq : float Highest possible frequency (in Hz) for a filter use_pcen: bool If True (default), a per-channel energy normalization layer is used learnable_pcen: bool: If True (default), the per-channel energy normalization layer is learnable use_legacy_complex: bool If False, torch.complex64 data type is used for gabor impulse responses If True, computation is performed on two real-valued torch.Tensors skip_transpose: bool If False, uses batch x time x channel convention of speechbrain. If True, uses batch x channel x time convention. n_fft: int Number of FFT bins Example ------- >>> inp_tensor = torch.rand([10, 8000]) >>> leaf = Leaf( ... out_channels=40, window_len=25., window_stride=10., in_channels=1 ... ) >>> out_tensor = leaf(inp_tensor) >>> out_tensor.shape torch.Size([10, 50, 40]) """ def __init__( self, out_channels, window_len: float = 25.0, window_stride: float = 10.0, sample_rate: int = 16000, input_shape=None, in_channels=None, min_freq=60.0, max_freq=None, use_pcen=True, learnable_pcen=True, use_legacy_complex=False, skip_transpose=False, n_fft=512, ): super().__init__() self.out_channels = out_channels window_size = int(sample_rate * window_len // 1000 + 1) window_stride = int(sample_rate * window_stride // 1000) if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input_shape(input_shape) self.complex_conv = GaborConv1d( out_channels=2 * out_channels, in_channels=in_channels, kernel_size=window_size, stride=1, padding="same", bias=False, n_fft=n_fft, sample_rate=sample_rate, min_freq=min_freq, max_freq=max_freq, use_legacy_complex=use_legacy_complex, skip_transpose=True, ) self.pooling = GaussianLowpassPooling( in_channels=self.out_channels, kernel_size=window_size, stride=window_stride, skip_transpose=True, ) if use_pcen: self.compression = PCEN( self.out_channels, alpha=0.96, smooth_coef=0.04, delta=2.0, floor=1e-12, trainable=learnable_pcen, per_channel_smooth_coef=True, skip_transpose=True, ) else: self.compression = None self.skip_transpose = skip_transpose
[docs] @fwd_default_precision(cast_inputs=torch.float32) def forward(self, x): """ Returns the learned LEAF features Arguments --------- x : torch.Tensor of shape (batch, time, 1) or (batch, time) batch of input signals. 2d or 3d tensors are expected. Returns ------- outputs : torch.Tensor """ if not self.skip_transpose: x = x.transpose(1, -1) unsqueeze = x.ndim == 2 if unsqueeze: x = x.unsqueeze(1) outputs = self.complex_conv(x) outputs = self._squared_modulus_activation(outputs) outputs = self.pooling(outputs) outputs = torch.maximum( outputs, torch.tensor(1e-5, device=outputs.device) ) if self.compression: outputs = self.compression(outputs) if not self.skip_transpose: outputs = outputs.transpose(1, -1) return outputs
def _squared_modulus_activation(self, x): x = x.transpose(1, 2) output = 2 * torch.nn.functional.avg_pool1d( x**2.0, kernel_size=2, stride=2 ) output = output.transpose(1, 2) return output def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels.""" if len(shape) == 2: in_channels = 1 elif len(shape) == 3: in_channels = 1 else: raise ValueError( "Leaf expects 2d or 3d inputs. Got " + str(len(shape)) ) return in_channels
[docs] def upalign_value(x, to: int) -> int: """If `x` cannot evenly divide `to`, round it up to the next value that can.""" assert x >= 0 if (x % to) == 0: return x return x + to - (x % to)
[docs] @dataclass class StreamingFeatureWrapperContext: """Streaming metadata for the feature extractor. Holds some past context frames.""" left_context: Optional[torch.Tensor] """Cached left frames to be inserted as left padding for the next chunk. Initially `None` then gets updated from the last frames of the current chunk. See the relevant `forward` function for details."""
[docs] class StreamingFeatureWrapper(torch.nn.Module): """Wraps an arbitrary filter so that it can be used in a streaming fashion (i.e. on a per-chunk basis), by remembering context and making "clever" use of padding. Arguments --------- module : torch.nn.Module The filter to wrap; e.g. a module list that constitutes a sequential feature extraction pipeline. The module is assumed to pad its inputs, e.g. the output of a convolution with a stride of 1 would end up with the same frame count as the input. properties : FilterProperties The effective filter properties of the provided module. This is used to determine padding and caching. """ def __init__(self, module: torch.nn.Module, properties: FilterProperties): super().__init__() self.module = module self.properties = properties if self.properties.causal: raise ValueError( "Causal streaming feature wrapper is not yet supported" ) if self.properties.dilation != 1: raise ValueError( "Dilation not yet supported in streaming feature wrapper" )
[docs] def get_required_padding(self) -> int: """Computes the number of padding/context frames that need to be injected at the past and future of the input signal in the forward pass. """ return upalign_value( (self.properties.window_size - 1) // 2, self.properties.stride )
[docs] def get_output_count_per_pad_frame(self) -> int: """Computes the exact number of produced frames (along the time dimension) per input pad frame.""" return self.get_required_padding() // self.properties.stride
[docs] def forward( self, chunk: torch.Tensor, context: StreamingFeatureWrapperContext, *extra_args, **extra_kwargs, ) -> torch.Tensor: """Forward pass for the streaming feature wrapper. For the first chunk, 0-padding is inserted at the past of the input. For any chunk (including the first), some future frames get truncated and cached to be inserted as left context for the next chunk in time. For further explanations, see the comments in the code. Note that due to how the padding is implemented, you may want to call this with a chunk worth full of zeros (potentially more for filters with large windows) at the end of your input so that the final frames have a chance to get processed by the filter. See :meth:`~StreamingFeatureWrapper.get_recommended_final_chunk_count`. This is not really an issue when processing endless streams, but when processing files, it could otherwise result in truncated outputs. Arguments --------- chunk : torch.Tensor Chunk of input of shape [batch size, time]; typically a raw waveform. Normally, in a chunkwise streaming scenario, `time = (stride-1) * chunk_size` where `chunk_size` is the desired **output** frame count. context : StreamingFeatureWrapperContext Mutable streaming context object; should be reused for subsequent calls in the same streaming session. *extra_args : tuple **extra_kwargs : dict Args to be passed to he module. Returns ------- torch.Tensor Processed chunk of shape [batch size, output frames]. This shape is equivalent to the shape of `module(chunk)`. """ feat_pad_size = self.get_required_padding() num_outputs_per_pad = self.get_output_count_per_pad_frame() # consider two audio chunks of 6 samples (for the example), where # each sample is denoted by 1, 2, ..., 6 # so chunk 1 is 123456 and chunk 2 is 123456 if context.left_context is None: # for the first chunk we left pad the input by two padding's worth of zeros, # and truncate the right, so that we can pretend to have right padding and # still consume the same amount of samples every time # # our first processed chunk will look like: # 0000123456 # ^^ right padding (truncated) # ^^^^^^ frames that some outputs are centered on # ^^ left padding (truncated) chunk = torch.nn.functional.pad(chunk, (feat_pad_size * 2, 0)) else: # prepend left context # # for the second chunk ownwards, given the above example: # 34 of the previous chunk becomes left padding # 56 of the previous chunk becomes the first frames of this chunk # thus on the second iteration (and onwards) it will look like: # 3456123456 # ^^ right padding (truncated) # ^^^^^^ frames that some outputs are centered on # ^^ left padding (truncated) chunk = torch.cat((context.left_context, chunk), 1) # our chunk's right context will become the start of the "next processed chunk" # plus we need left padding for that one, so make it double context.left_context = chunk[:, -feat_pad_size * 2 :] feats = self.module(chunk, *extra_args, **extra_kwargs) # truncate left and right context feats = feats[:, num_outputs_per_pad:-num_outputs_per_pad, ...] return feats
[docs] def get_filter_properties(self) -> FilterProperties: return self.properties
[docs] def make_streaming_context(self) -> StreamingFeatureWrapperContext: return StreamingFeatureWrapperContext(None)
[docs] class VocalFeatures(torch.nn.Module): """Estimates the vocal characteristics of a signal in four categories of features: * Autocorrelation-based * Period-based (jitter/shimmer) * Spectrum-based * MFCCs Arguments --------- min_f0_Hz: int The minimum allowed fundamental frequency, to reduce octave errors. Default is 80 Hz, based on human voice standard frequency range. max_f0_Hz: int The maximum allowed fundamental frequency, to reduce octave errors. Default is 300 Hz, based on human voice standard frequency range. step_size: float The time between analysis windows (in seconds). window_size: float The size of the analysis window (in seconds). Must be long enough to contain at least 4 periods at the minimum frequency. sample_rate: int The number of samples in a second. log_scores: bool Whether to represent the jitter/shimmer/hnr/gne on a log scale, as these features are typically close to zero. eps: float The minimum value before log transformation, default of 1e-3 results in a maximum value of 30 dB. sma_neighbors: int Number of frames to average -- default 3 n_mels: int (default: 23) Number of filters to use for creating filterbank. n_mfcc: int (default: 4) Number of output coefficients Example ------- >>> audio = torch.rand(1, 16000) >>> feature_maker = VocalFeatures() >>> vocal_features = feature_maker(audio) >>> vocal_features.shape torch.Size([1, 96, 17]) """ def __init__( self, min_f0_Hz: int = 80, max_f0_Hz: int = 300, step_size: float = 0.01, window_size: float = 0.05, sample_rate: int = 16000, log_scores: bool = True, eps: float = 1e-3, sma_neighbors: int = 3, n_mels: int = 23, n_mfcc: int = 4, ): super().__init__() # Convert arguments to sample counts. Max lag corresponds to min f0 and vice versa. self.step_samples = int(step_size * sample_rate) self.window_samples = int(window_size * sample_rate) self.max_lag = int(sample_rate / min_f0_Hz) self.min_lag = int(sample_rate / max_f0_Hz) self.sample_rate = sample_rate self.log_scores = log_scores self.eps = eps self.sma_neighbors = sma_neighbors assert ( self.max_lag * PERIODIC_NEIGHBORS <= self.window_samples ), f"Need at least {PERIODIC_NEIGHBORS} periods in a window" self.compute_fbanks = Filterbank( sample_rate=sample_rate, n_fft=self.window_samples, n_mels=n_mels, ) self.compute_dct = DCT(input_size=n_mels, n_out=n_mfcc) self.compute_gne = partial( compute_gne, frame_len=window_size, hop_len=step_size )
[docs] def forward(self, audio: torch.Tensor): """Compute voice features. Arguments --------- audio: torch.Tensor The audio signal to be converted to voice features. Returns ------- features: torch.Tensor A [batch, frame, 13+n_mfcc] tensor with the following features per-frame. * autocorr_f0: A per-frame estimate of the f0 in Hz. * autocorr_hnr: harmonicity-to-noise ratio for each frame. * periodic_jitter: Average deviation in period length. * periodic_shimmer: Average deviation in amplitude per period. * gne: The glottal-to-noise-excitation ratio. * spectral_centroid: "center-of-mass" for spectral frames. * spectral_spread: avg distance from centroid for spectral frames. * spectral_skew: asymmetry of spectrum about the centroid. * spectral_kurtosis: tailedness of spectrum. * spectral_entropy: The peakiness of the spectrum. * spectral_flatness: The ratio of geometric mean to arithmetic mean. * spectral_crest: The ratio of spectral maximum to arithmetic mean. * spectral_flux: The 2-normed diff between successive spectral values. * mfcc_{0-n_mfcc}: The mel cepstral coefficients. """ assert ( audio.dim() == 2 ), "Expected audio to be 2-dimensional, [batch, samples]" # Use frame-based autocorrelation to estimate harmonicity and f0 frames = audio.unfold( dimension=-1, size=self.window_samples, step=self.step_samples ) harmonicity, best_lags = compute_autocorr_features( frames, self.min_lag, self.max_lag ) f0 = self.sample_rate / best_lags # Autocorrelation score is the source of harmonicity here, 1-harmonicity is noise # See "Harmonic to Noise Ratio Measurement - Selection of Window and Length" # By J. Fernandez, F. Teixeira, V. Guedes, A. Junior, and J. P. Teixeira # Ratio is dominated by denominator, just ignore numerator here. hnr = 1 - harmonicity jitter, shimmer = compute_periodic_features(frames, best_lags) # Because of resampling, gne may not be exactly same size gne = self.compute_gne(audio, self.sample_rate) if gne.size(1) > frames.size(1): gne = gne[:, : frames.size(1)] # These features all are close to 0 most of the time, use log to differentiate if self.log_scores: hnr = -10 * hnr.clamp(min=self.eps).log10() jitter = -10 * jitter.clamp(min=self.eps).log10() shimmer = -10 * shimmer.clamp(min=self.eps).log10() gne = -10 * (1 - gne).clamp(min=self.eps).log10() # Compute spectrum for remaining features hann = torch.hann_window(self.window_samples, device=frames.device) spectrum = torch.abs(torch.fft.rfft(frames * hann.view(1, 1, -1))) spectral_features = compute_spectral_features(spectrum) mfccs = self.compute_dct(self.compute_fbanks(spectrum)) # Combine all features into a single tensor features = torch.stack((f0, hnr, jitter, shimmer, gne), dim=-1) features = torch.cat((features, spectral_features, mfccs), dim=-1) # Compute moving average (as OpenSMILE does) if self.sma_neighbors > 1: features = moving_average(features, dim=1, n=self.sma_neighbors) return features
[docs] def moving_average(features, dim=1, n=3): """Computes moving average on a given dimension. Arguments --------- features: torch.Tensor The feature tensor to smooth out. dim: int The time dimension (for smoothing). n: int The number of points in the moving average Returns ------- smoothed_features: torch.Tensor The features after the moving average is applied. Example ------- >>> feats = torch.tensor([[0., 1., 0., 1., 0., 1., 0.]]) >>> moving_average(feats) tensor([[0.5000, 0.3333, 0.6667, 0.3333, 0.6667, 0.3333, 0.5000]]) """ features = features.transpose(dim, -1) pad = n // 2 features = torch.nn.functional.avg_pool1d( features, kernel_size=n, padding=pad, stride=1, count_include_pad=False ) return features.transpose(dim, -1)