Source code for speechbrain.processing.speech_augmentation

"""Classes for mutating speech data for data augmentation.

This module provides classes that produce realistic distortions of speech
data for the purpose of training speech processing models. The list of
distortions includes adding noise, adding reverberation, changing speed,
and more. All the classes are of type `torch.nn.Module`. This gives the
possibility to have end-to-end differentiability and
backpropagate the gradient through them. In addition, all operations
are expected to be performed on the GPU (where available) for efficiency.

Authors
 * Peter Plantinga 2020
"""

# Importing libraries
import math
import torch
import torch.nn.functional as F
from speechbrain.dataio.legacy import ExtendedCSVDataset
from speechbrain.dataio.dataloader import make_dataloader
from speechbrain.processing.signal_processing import (
    compute_amplitude,
    dB_to_amplitude,
    convolve1d,
    notch_filter,
    reverberate,
)


[docs]class AddNoise(torch.nn.Module): """This class additively combines a noise signal to the input signal. Arguments --------- csv_file : str The name of a csv file containing the location of the noise audio files. If none is provided, white noise will be used. csv_keys : list, None, optional Default: None . One data entry for the noise data should be specified. If None, the csv file is expected to have only one data entry. sorting : str The order to iterate the csv file, from one of the following options: random, original, ascending, and descending. num_workers : int Number of workers in the DataLoader (See PyTorch DataLoader docs). snr_low : int The low end of the mixing ratios, in decibels. snr_high : int The high end of the mixing ratios, in decibels. pad_noise : bool If True, copy noise signals that are shorter than their corresponding clean signals so as to cover the whole clean signal. Otherwise, leave the noise un-padded. mix_prob : float The probability that a batch of signals will be mixed with a noise signal. By default, every batch is mixed with noise. start_index : int The index in the noise waveforms to start from. By default, chooses a random index in [0, len(noise) - len(waveforms)]. normalize : bool If True, output noisy signals that exceed [-1,1] will be normalized to [-1,1]. replacements : dict A set of string replacements to carry out in the csv file. Each time a key is found in the text, it will be replaced with the corresponding value. noise_sample_rate : int The sample rate of the noise audio signals, so noise can be resampled to the clean sample rate if necessary. clean_sample_rate : int The sample rate of the clean audio signals, so noise can be resampled to the clean sample rate if necessary. Example ------- >>> import pytest >>> from speechbrain.dataio.dataio import read_audio >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> clean = signal.unsqueeze(0) # [batch, time, channels] >>> noisifier = AddNoise('tests/samples/annotation/noise.csv', ... replacements={'noise_folder': 'tests/samples/noise'}) >>> noisy = noisifier(clean, torch.ones(1)) """ def __init__( self, csv_file=None, csv_keys=None, sorting="random", num_workers=0, snr_low=0, snr_high=0, pad_noise=False, mix_prob=1.0, start_index=None, normalize=False, replacements={}, noise_sample_rate=16000, clean_sample_rate=16000, ): super().__init__() self.csv_file = csv_file self.csv_keys = csv_keys self.sorting = sorting self.num_workers = num_workers self.snr_low = snr_low self.snr_high = snr_high self.pad_noise = pad_noise self.mix_prob = mix_prob self.start_index = start_index self.normalize = normalize self.replacements = replacements if noise_sample_rate != clean_sample_rate: self.resampler = Resample(noise_sample_rate, clean_sample_rate)
[docs] def forward(self, waveforms, lengths): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ # Copy clean waveform to initialize noisy waveform noisy_waveform = waveforms.clone() lengths = (lengths * waveforms.shape[1]).unsqueeze(1) # Don't add noise (return early) 1-`mix_prob` portion of the batches if torch.rand(1) > self.mix_prob: return noisy_waveform # Compute the average amplitude of the clean waveforms clean_amplitude = compute_amplitude(waveforms, lengths) # Pick an SNR and use it to compute the mixture amplitude factors SNR = torch.rand(len(waveforms), 1, device=waveforms.device) SNR = SNR * (self.snr_high - self.snr_low) + self.snr_low noise_amplitude_factor = 1 / (dB_to_amplitude(SNR) + 1) new_noise_amplitude = noise_amplitude_factor * clean_amplitude # Scale clean signal appropriately noisy_waveform *= 1 - noise_amplitude_factor # Loop through clean samples and create mixture if self.csv_file is None: white_noise = torch.randn_like(waveforms) noisy_waveform += new_noise_amplitude * white_noise else: tensor_length = waveforms.shape[1] noise_waveform, noise_length = self._load_noise( lengths, tensor_length, ) # Rescale and add noise_amplitude = compute_amplitude(noise_waveform, noise_length) noise_waveform *= new_noise_amplitude / (noise_amplitude + 1e-14) noisy_waveform += noise_waveform # Normalizing to prevent clipping if self.normalize: abs_max, _ = torch.max( torch.abs(noisy_waveform), dim=1, keepdim=True ) noisy_waveform = noisy_waveform / abs_max.clamp(min=1.0) return noisy_waveform
def _load_noise(self, lengths, max_length): """Load a batch of noises""" lengths = lengths.long().squeeze(1) batch_size = len(lengths) # Load a noise batch if not hasattr(self, "data_loader"): # Set parameters based on input self.device = lengths.device # Create a data loader for the noise wavforms if self.csv_file is not None: dataset = ExtendedCSVDataset( csvpath=self.csv_file, output_keys=self.csv_keys, sorting=self.sorting if self.sorting != "random" else "original", replacements=self.replacements, ) self.data_loader = make_dataloader( dataset, batch_size=batch_size, num_workers=self.num_workers, shuffle=(self.sorting == "random"), ) self.noise_data = iter(self.data_loader) # Load noise to correct device noise_batch, noise_len = self._load_noise_batch_of_size(batch_size) noise_batch = noise_batch.to(lengths.device) noise_len = noise_len.to(lengths.device) # Resample noise if necessary if hasattr(self, "resampler"): noise_batch = self.resampler(noise_batch) # Convert relative length to an index noise_len = (noise_len * noise_batch.shape[1]).long() # Ensure shortest wav can cover speech signal # WARNING: THIS COULD BE SLOW IF THERE ARE VERY SHORT NOISES if self.pad_noise: while torch.any(noise_len < lengths): min_len = torch.min(noise_len) prepend = noise_batch[:, :min_len] noise_batch = torch.cat((prepend, noise_batch), axis=1) noise_len += min_len # Ensure noise batch is long enough elif noise_batch.size(1) < max_length: padding = (0, max_length - noise_batch.size(1)) noise_batch = torch.nn.functional.pad(noise_batch, padding) # Select a random starting location in the waveform start_index = self.start_index if self.start_index is None: start_index = 0 max_chop = (noise_len - lengths).min().clamp(min=1) start_index = torch.randint( high=max_chop, size=(1,), device=lengths.device ) # Truncate noise_batch to max_length noise_batch = noise_batch[:, start_index : start_index + max_length] noise_len = (noise_len - start_index).clamp(max=max_length).unsqueeze(1) return noise_batch, noise_len def _load_noise_batch_of_size(self, batch_size): """Concatenate noise batches, then chop to correct size""" noise_batch, noise_lens = self._load_noise_batch() # Expand while len(noise_batch) < batch_size: added_noise, added_lens = self._load_noise_batch() noise_batch, noise_lens = AddNoise._concat_batch( noise_batch, noise_lens, added_noise, added_lens ) # Contract if len(noise_batch) > batch_size: noise_batch = noise_batch[:batch_size] noise_lens = noise_lens[:batch_size] return noise_batch, noise_lens @staticmethod def _concat_batch(noise_batch, noise_lens, added_noise, added_lens): """Concatenate two noise batches of potentially different lengths""" # pad shorter batch to correct length noise_tensor_len = noise_batch.shape[1] added_tensor_len = added_noise.shape[1] pad = (0, abs(noise_tensor_len - added_tensor_len)) if noise_tensor_len > added_tensor_len: added_noise = torch.nn.functional.pad(added_noise, pad) added_lens = added_lens * added_tensor_len / noise_tensor_len else: noise_batch = torch.nn.functional.pad(noise_batch, pad) noise_lens = noise_lens * noise_tensor_len / added_tensor_len noise_batch = torch.cat((noise_batch, added_noise)) noise_lens = torch.cat((noise_lens, added_lens)) return noise_batch, noise_lens def _load_noise_batch(self): """Load a batch of noises, restarting iteration if necessary.""" try: # Don't necessarily know the key noises, lens = next(self.noise_data).at_position(0) except StopIteration: self.noise_data = iter(self.data_loader) noises, lens = next(self.noise_data).at_position(0) return noises, lens
[docs]class AddReverb(torch.nn.Module): """This class convolves an audio signal with an impulse response. Arguments --------- csv_file : str The name of a csv file containing the location of the impulse response files. sorting : str The order to iterate the csv file, from one of the following options: random, original, ascending, and descending. reverb_prob : float The chance that the audio signal will be reverbed. By default, every batch is reverbed. rir_scale_factor: float It compresses or dilates the given impulse response. If 0 < scale_factor < 1, the impulse response is compressed (less reverb), while if scale_factor > 1 it is dilated (more reverb). replacements : dict A set of string replacements to carry out in the csv file. Each time a key is found in the text, it will be replaced with the corresponding value. reverb_sample_rate : int The sample rate of the corruption signals (rirs), so that they can be resampled to clean sample rate if necessary. clean_sample_rate : int The sample rate of the clean signals, so that the corruption signals can be resampled to the clean sample rate before convolution. Example ------- >>> import pytest >>> from speechbrain.dataio.dataio import read_audio >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> clean = signal.unsqueeze(0) # [batch, time, channels] >>> reverb = AddReverb('tests/samples/annotation/RIRs.csv', ... replacements={'rir_folder': 'tests/samples/RIRs'}) >>> reverbed = reverb(clean, torch.ones(1)) """ def __init__( self, csv_file, sorting="random", reverb_prob=1.0, rir_scale_factor=1.0, replacements={}, reverb_sample_rate=16000, clean_sample_rate=16000, ): super().__init__() self.csv_file = csv_file self.sorting = sorting self.reverb_prob = reverb_prob self.replacements = replacements self.rir_scale_factor = rir_scale_factor # Create a data loader for the RIR waveforms dataset = ExtendedCSVDataset( csvpath=self.csv_file, sorting=self.sorting if self.sorting != "random" else "original", replacements=self.replacements, ) self.data_loader = make_dataloader( dataset, shuffle=(self.sorting == "random") ) self.rir_data = iter(self.data_loader) if reverb_sample_rate != clean_sample_rate: self.resampler = Resample(reverb_sample_rate, clean_sample_rate)
[docs] def forward(self, waveforms, lengths): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ # Don't add reverb (return early) 1-`reverb_prob` portion of the time if torch.rand(1) > self.reverb_prob: return waveforms.clone() # Add channels dimension if necessary channel_added = False if len(waveforms.shape) == 2: waveforms = waveforms.unsqueeze(-1) channel_added = True # Convert length from ratio to number of indices # lengths = (lengths * waveforms.shape[1])[:, None, None] # Load and prepare RIR rir_waveform = self._load_rir(waveforms) # Resample to correct rate if hasattr(self, "resampler"): rir_waveform = self.resampler(rir_waveform) # Compress or dilate RIR if self.rir_scale_factor != 1: rir_waveform = F.interpolate( rir_waveform.transpose(1, -1), scale_factor=self.rir_scale_factor, mode="linear", align_corners=False, ) rir_waveform = rir_waveform.transpose(1, -1) rev_waveform = reverberate(waveforms, rir_waveform, rescale_amp="avg") # Remove channels dimension if added if channel_added: return rev_waveform.squeeze(-1) return rev_waveform
def _load_rir(self, waveforms): try: rir_waveform, length = next(self.rir_data).at_position(0) except StopIteration: self.rir_data = iter(self.data_loader) rir_waveform, length = next(self.rir_data).at_position(0) # Make sure RIR has correct channels if len(rir_waveform.shape) == 2: rir_waveform = rir_waveform.unsqueeze(-1) # Make sure RIR has correct type and device rir_waveform = rir_waveform.type(waveforms.dtype) return rir_waveform.to(waveforms.device)
[docs]class SpeedPerturb(torch.nn.Module): """Slightly speed up or slow down an audio signal. Resample the audio signal at a rate that is similar to the original rate, to achieve a slightly slower or slightly faster signal. This technique is outlined in the paper: "Audio Augmentation for Speech Recognition" Arguments --------- orig_freq : int The frequency of the original signal. speeds : list The speeds that the signal should be changed to, as a percentage of the original signal (i.e. `speeds` is divided by 100 to get a ratio). perturb_prob : float The chance that the batch will be speed- perturbed. By default, every batch is perturbed. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> perturbator = SpeedPerturb(orig_freq=16000, speeds=[90]) >>> clean = signal.unsqueeze(0) >>> perturbed = perturbator(clean) >>> clean.shape torch.Size([1, 52173]) >>> perturbed.shape torch.Size([1, 46956]) """ def __init__( self, orig_freq, speeds=[90, 100, 110], perturb_prob=1.0, ): super().__init__() self.orig_freq = orig_freq self.speeds = speeds self.perturb_prob = perturb_prob # Initialize index of perturbation self.samp_index = 0 # Initialize resamplers self.resamplers = [] for speed in self.speeds: config = { "orig_freq": self.orig_freq, "new_freq": self.orig_freq * speed // 100, } self.resamplers.append(Resample(**config))
[docs] def forward(self, waveform): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ # Don't perturb (return early) 1-`perturb_prob` portion of the batches if torch.rand(1) > self.perturb_prob: return waveform.clone() # Perform a random perturbation self.samp_index = torch.randint(len(self.speeds), (1,))[0] perturbed_waveform = self.resamplers[self.samp_index](waveform) return perturbed_waveform
[docs]class Resample(torch.nn.Module): """This class resamples an audio signal using sinc-based interpolation. It is a modification of the `resample` function from torchaudio (https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html) Arguments --------- orig_freq : int the sampling frequency of the input signal. new_freq : int the new sampling frequency after this operation is performed. lowpass_filter_width : int Controls the sharpness of the filter, larger numbers result in a sharper filter, but they are less efficient. Values from 4 to 10 are allowed. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> signal = signal.unsqueeze(0) # [batch, time, channels] >>> resampler = Resample(orig_freq=16000, new_freq=8000) >>> resampled = resampler(signal) >>> signal.shape torch.Size([1, 52173]) >>> resampled.shape torch.Size([1, 26087]) """ def __init__( self, orig_freq=16000, new_freq=16000, lowpass_filter_width=6, ): super().__init__() self.orig_freq = orig_freq self.new_freq = new_freq self.lowpass_filter_width = lowpass_filter_width # Compute rate for striding self._compute_strides() assert self.orig_freq % self.conv_stride == 0 assert self.new_freq % self.conv_transpose_stride == 0 def _compute_strides(self): """Compute the phases in polyphase filter. (almost directly from torchaudio.compliance.kaldi) """ # Compute new unit based on ratio of in/out frequencies base_freq = math.gcd(self.orig_freq, self.new_freq) input_samples_in_unit = self.orig_freq // base_freq self.output_samples = self.new_freq // base_freq # Store the appropriate stride based on the new units self.conv_stride = input_samples_in_unit self.conv_transpose_stride = self.output_samples
[docs] def forward(self, waveforms): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ if not hasattr(self, "first_indices"): self._indices_and_weights(waveforms) # Don't do anything if the frequencies are the same if self.orig_freq == self.new_freq: return waveforms unsqueezed = False if len(waveforms.shape) == 2: waveforms = waveforms.unsqueeze(1) unsqueezed = True elif len(waveforms.shape) == 3: waveforms = waveforms.transpose(1, 2) else: raise ValueError("Input must be 2 or 3 dimensions") # Do resampling resampled_waveform = self._perform_resample(waveforms) if unsqueezed: resampled_waveform = resampled_waveform.squeeze(1) else: resampled_waveform = resampled_waveform.transpose(1, 2) return resampled_waveform
def _perform_resample(self, waveforms): """Resamples the waveform at the new frequency. This matches Kaldi's OfflineFeatureTpl ResampleWaveform which uses a LinearResample (resample a signal at linearly spaced intervals to up/downsample a signal). LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of `new_freq`). It uses sinc/bandlimited interpolation to upsample/downsample the signal. (almost directly from torchaudio.compliance.kaldi) https://ccrma.stanford.edu/~jos/resample/ Theory_Ideal_Bandlimited_Interpolation.html https://github.com/kaldi-asr/kaldi/blob/master/src/feat/resample.h#L56 Arguments --------- waveforms : tensor The batch of audio signals to resample. Returns ------- The waveforms at the new frequency. """ # Compute output size and initialize batch_size, num_channels, wave_len = waveforms.size() window_size = self.weights.size(1) tot_output_samp = self._output_samples(wave_len) resampled_waveform = torch.zeros( (batch_size, num_channels, tot_output_samp), device=waveforms.device, ) self.weights = self.weights.to(waveforms.device) # Check weights are on correct device if waveforms.device != self.weights.device: self.weights = self.weights.to(waveforms.device) # eye size: (num_channels, num_channels, 1) eye = torch.eye(num_channels, device=waveforms.device).unsqueeze(2) # Iterate over the phases in the polyphase filter for i in range(self.first_indices.size(0)): wave_to_conv = waveforms first_index = int(self.first_indices[i].item()) if first_index >= 0: # trim the signal as the filter will not be applied # before the first_index wave_to_conv = wave_to_conv[..., first_index:] # pad the right of the signal to allow partial convolutions # meaning compute values for partial windows (e.g. end of the # window is outside the signal length) max_index = (tot_output_samp - 1) // self.output_samples end_index = max_index * self.conv_stride + window_size current_wave_len = wave_len - first_index right_padding = max(0, end_index + 1 - current_wave_len) left_padding = max(0, -first_index) wave_to_conv = torch.nn.functional.pad( wave_to_conv, (left_padding, right_padding) ) conv_wave = torch.nn.functional.conv1d( input=wave_to_conv, weight=self.weights[i].repeat(num_channels, 1, 1), stride=self.conv_stride, groups=num_channels, ) # we want conv_wave[:, i] to be at # output[:, i + n*conv_transpose_stride] dilated_conv_wave = torch.nn.functional.conv_transpose1d( conv_wave, eye, stride=self.conv_transpose_stride ) # pad dilated_conv_wave so it reaches the output length if needed. left_padding = i previous_padding = left_padding + dilated_conv_wave.size(-1) right_padding = max(0, tot_output_samp - previous_padding) dilated_conv_wave = torch.nn.functional.pad( dilated_conv_wave, (left_padding, right_padding) ) dilated_conv_wave = dilated_conv_wave[..., :tot_output_samp] resampled_waveform += dilated_conv_wave return resampled_waveform def _output_samples(self, input_num_samp): """Based on LinearResample::GetNumOutputSamples. LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of ``new_freq``). It uses sinc/bandlimited interpolation to upsample/downsample the signal. (almost directly from torchaudio.compliance.kaldi) Arguments --------- input_num_samp : int The number of samples in each example in the batch. Returns ------- Number of samples in the output waveform. """ # For exact computation, we measure time in "ticks" of 1.0 / tick_freq, # where tick_freq is the least common multiple of samp_in and # samp_out. samp_in = int(self.orig_freq) samp_out = int(self.new_freq) tick_freq = abs(samp_in * samp_out) // math.gcd(samp_in, samp_out) ticks_per_input_period = tick_freq // samp_in # work out the number of ticks in the time interval # [ 0, input_num_samp/samp_in ). interval_length = input_num_samp * ticks_per_input_period if interval_length <= 0: return 0 ticks_per_output_period = tick_freq // samp_out # Get the last output-sample in the closed interval, # i.e. replacing [ ) with [ ]. Note: integer division rounds down. # See http://en.wikipedia.org/wiki/Interval_(mathematics) for an # explanation of the notation. last_output_samp = interval_length // ticks_per_output_period # We need the last output-sample in the open interval, so if it # takes us to the end of the interval exactly, subtract one. if last_output_samp * ticks_per_output_period == interval_length: last_output_samp -= 1 # First output-sample index is zero, so the number of output samples # is the last output-sample plus one. num_output_samp = last_output_samp + 1 return num_output_samp def _indices_and_weights(self, waveforms): """Based on LinearResample::SetIndexesAndWeights Retrieves the weights for resampling as well as the indices in which they are valid. LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of ``new_freq``). It uses sinc/bandlimited interpolation to upsample/downsample the signal. Returns ------- - the place where each filter should start being applied - the filters to be applied to the signal for resampling """ # Lowpass filter frequency depends on smaller of two frequencies min_freq = min(self.orig_freq, self.new_freq) lowpass_cutoff = 0.99 * 0.5 * min_freq assert lowpass_cutoff * 2 <= min_freq window_width = self.lowpass_filter_width / (2.0 * lowpass_cutoff) assert lowpass_cutoff < min(self.orig_freq, self.new_freq) / 2 output_t = torch.arange( start=0.0, end=self.output_samples, device=waveforms.device, ) output_t /= self.new_freq min_t = output_t - window_width max_t = output_t + window_width min_input_index = torch.ceil(min_t * self.orig_freq) max_input_index = torch.floor(max_t * self.orig_freq) num_indices = max_input_index - min_input_index + 1 max_weight_width = num_indices.max() j = torch.arange(max_weight_width, device=waveforms.device) input_index = min_input_index.unsqueeze(1) + j.unsqueeze(0) delta_t = (input_index / self.orig_freq) - output_t.unsqueeze(1) weights = torch.zeros_like(delta_t) inside_window_indices = delta_t.abs().lt(window_width) # raised-cosine (Hanning) window with width `window_width` weights[inside_window_indices] = 0.5 * ( 1 + torch.cos( 2 * math.pi * lowpass_cutoff / self.lowpass_filter_width * delta_t[inside_window_indices] ) ) t_eq_zero_indices = delta_t.eq(0.0) t_not_eq_zero_indices = ~t_eq_zero_indices # sinc filter function weights[t_not_eq_zero_indices] *= torch.sin( 2 * math.pi * lowpass_cutoff * delta_t[t_not_eq_zero_indices] ) / (math.pi * delta_t[t_not_eq_zero_indices]) # limit of the function at t = 0 weights[t_eq_zero_indices] *= 2 * lowpass_cutoff # size (output_samples, max_weight_width) weights /= self.orig_freq self.first_indices = min_input_index self.weights = weights
[docs]class AddBabble(torch.nn.Module): """Simulate babble noise by mixing the signals in a batch. Arguments --------- speaker_count : int The number of signals to mix with the original signal. snr_low : int The low end of the mixing ratios, in decibels. snr_high : int The high end of the mixing ratios, in decibels. mix_prob : float The probability that the batch of signals will be mixed with babble noise. By default, every signal is mixed. Example ------- >>> import pytest >>> babbler = AddBabble() >>> dataset = ExtendedCSVDataset( ... csvpath='tests/samples/annotation/speech.csv', ... replacements={"data_folder": "tests/samples/single-mic"} ... ) >>> loader = make_dataloader(dataset, batch_size=5) >>> speech, lengths = next(iter(loader)).at_position(0) >>> noisy = babbler(speech, lengths) """ def __init__( self, speaker_count=3, snr_low=0, snr_high=0, mix_prob=1, ): super().__init__() self.speaker_count = speaker_count self.snr_low = snr_low self.snr_high = snr_high self.mix_prob = mix_prob
[docs] def forward(self, waveforms, lengths): """ Arguments --------- waveforms : tensor A batch of audio signals to process, with shape `[batch, time]` or `[batch, time, channels]`. lengths : tensor The length of each audio in the batch, with shape `[batch]`. Returns ------- Tensor with processed waveforms. """ babbled_waveform = waveforms.clone() lengths = (lengths * waveforms.shape[1]).unsqueeze(1) batch_size = len(waveforms) # Don't mix (return early) 1-`mix_prob` portion of the batches if torch.rand(1) > self.mix_prob: return babbled_waveform # Pick an SNR and use it to compute the mixture amplitude factors clean_amplitude = compute_amplitude(waveforms, lengths) SNR = torch.rand(batch_size, 1, device=waveforms.device) SNR = SNR * (self.snr_high - self.snr_low) + self.snr_low noise_amplitude_factor = 1 / (dB_to_amplitude(SNR) + 1) new_noise_amplitude = noise_amplitude_factor * clean_amplitude # Scale clean signal appropriately babbled_waveform *= 1 - noise_amplitude_factor # For each speaker in the mixture, roll and add babble_waveform = waveforms.roll((1,), dims=0) babble_len = lengths.roll((1,), dims=0) for i in range(1, self.speaker_count): babble_waveform += waveforms.roll((1 + i,), dims=0) babble_len = torch.max(babble_len, babble_len.roll((1,), dims=0)) # Rescale and add to mixture babble_amplitude = compute_amplitude(babble_waveform, babble_len) babble_waveform *= new_noise_amplitude / (babble_amplitude + 1e-14) babbled_waveform += babble_waveform return babbled_waveform
[docs]class DropFreq(torch.nn.Module): """This class drops a random frequency from the signal. The purpose of this class is to teach models to learn to rely on all parts of the signal, not just a few frequency bands. Arguments --------- drop_freq_low : float The low end of frequencies that can be dropped, as a fraction of the sampling rate / 2. drop_freq_high : float The high end of frequencies that can be dropped, as a fraction of the sampling rate / 2. drop_count_low : int The low end of number of frequencies that could be dropped. drop_count_high : int The high end of number of frequencies that could be dropped. drop_width : float The width of the frequency band to drop, as a fraction of the sampling_rate / 2. drop_prob : float The probability that the batch of signals will have a frequency dropped. By default, every batch has frequencies dropped. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> dropper = DropFreq() >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> dropped_signal = dropper(signal.unsqueeze(0)) """ def __init__( self, drop_freq_low=1e-14, drop_freq_high=1, drop_count_low=1, drop_count_high=2, drop_width=0.05, drop_prob=1, ): super().__init__() self.drop_freq_low = drop_freq_low self.drop_freq_high = drop_freq_high self.drop_count_low = drop_count_low self.drop_count_high = drop_count_high self.drop_width = drop_width self.drop_prob = drop_prob
[docs] def forward(self, waveforms): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]`. """ # Don't drop (return early) 1-`drop_prob` portion of the batches dropped_waveform = waveforms.clone() if torch.rand(1) > self.drop_prob: return dropped_waveform # Add channels dimension if len(waveforms.shape) == 2: dropped_waveform = dropped_waveform.unsqueeze(-1) # Pick number of frequencies to drop drop_count = torch.randint( low=self.drop_count_low, high=self.drop_count_high + 1, size=(1,), ) # Pick a frequency to drop drop_range = self.drop_freq_high - self.drop_freq_low drop_frequency = ( torch.rand(drop_count) * drop_range + self.drop_freq_low ) # Filter parameters filter_length = 101 pad = filter_length // 2 # Start with delta function drop_filter = torch.zeros(1, filter_length, 1, device=waveforms.device) drop_filter[0, pad, 0] = 1 # Subtract each frequency for frequency in drop_frequency: notch_kernel = notch_filter( frequency, filter_length, self.drop_width, ).to(waveforms.device) drop_filter = convolve1d(drop_filter, notch_kernel, pad) # Apply filter dropped_waveform = convolve1d(dropped_waveform, drop_filter, pad) # Remove channels dimension if added return dropped_waveform.squeeze(-1)
[docs]class DropChunk(torch.nn.Module): """This class drops portions of the input signal. Using `DropChunk` as an augmentation strategy helps a models learn to rely on all parts of the signal, since it can't expect a given part to be present. Arguments --------- drop_length_low : int The low end of lengths for which to set the signal to zero, in samples. drop_length_high : int The high end of lengths for which to set the signal to zero, in samples. drop_count_low : int The low end of number of times that the signal can be dropped to zero. drop_count_high : int The high end of number of times that the signal can be dropped to zero. drop_start : int The first index for which dropping will be allowed. drop_end : int The last index for which dropping will be allowed. drop_prob : float The probability that the batch of signals will have a portion dropped. By default, every batch has portions dropped. noise_factor : float The factor relative to average amplitude of an utterance to use for scaling the white noise inserted. 1 keeps the average amplitude the same, while 0 inserts all 0's. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> dropper = DropChunk(drop_start=100, drop_end=200, noise_factor=0.) >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> signal = signal.unsqueeze(0) # [batch, time, channels] >>> length = torch.ones(1) >>> dropped_signal = dropper(signal, length) >>> float(dropped_signal[:, 150]) 0.0 """ def __init__( self, drop_length_low=100, drop_length_high=1000, drop_count_low=1, drop_count_high=10, drop_start=0, drop_end=None, drop_prob=1, noise_factor=0.0, ): super().__init__() self.drop_length_low = drop_length_low self.drop_length_high = drop_length_high self.drop_count_low = drop_count_low self.drop_count_high = drop_count_high self.drop_start = drop_start self.drop_end = drop_end self.drop_prob = drop_prob self.noise_factor = noise_factor # Validate low < high if drop_length_low > drop_length_high: raise ValueError("Low limit must not be more than high limit") if drop_count_low > drop_count_high: raise ValueError("Low limit must not be more than high limit") # Make sure the length doesn't exceed end - start if drop_end is not None and drop_end >= 0: if drop_start > drop_end: raise ValueError("Low limit must not be more than high limit") drop_range = drop_end - drop_start self.drop_length_low = min(drop_length_low, drop_range) self.drop_length_high = min(drop_length_high, drop_range)
[docs] def forward(self, waveforms, lengths): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. lengths : tensor Shape should be a single dimension, `[batch]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]` """ # Reading input list lengths = (lengths * waveforms.size(1)).long() batch_size = waveforms.size(0) dropped_waveform = waveforms.clone() # Don't drop (return early) 1-`drop_prob` portion of the batches if torch.rand(1) > self.drop_prob: return dropped_waveform # Store original amplitude for computing white noise amplitude clean_amplitude = compute_amplitude(waveforms, lengths.unsqueeze(1)) # Pick a number of times to drop drop_times = torch.randint( low=self.drop_count_low, high=self.drop_count_high + 1, size=(batch_size,), ) # Iterate batch to set mask for i in range(batch_size): if drop_times[i] == 0: continue # Pick lengths length = torch.randint( low=self.drop_length_low, high=self.drop_length_high + 1, size=(drop_times[i],), ) # Compute range of starting locations start_min = self.drop_start if start_min < 0: start_min += lengths[i] start_max = self.drop_end if start_max is None: start_max = lengths[i] if start_max < 0: start_max += lengths[i] start_max = max(0, start_max - length.max()) # Pick starting locations start = torch.randint( low=start_min, high=start_max + 1, size=(drop_times[i],), ) end = start + length # Update waveform if not self.noise_factor: for j in range(drop_times[i]): dropped_waveform[i, start[j] : end[j]] = 0.0 else: # Uniform distribution of -2 to +2 * avg amplitude should # preserve the average for normalization noise_max = 2 * clean_amplitude[i] * self.noise_factor for j in range(drop_times[i]): # zero-center the noise distribution noise_vec = torch.rand(length[j], device=waveforms.device) noise_vec = 2 * noise_max * noise_vec - noise_max dropped_waveform[i, start[j] : end[j]] = noise_vec return dropped_waveform
[docs]class DoClip(torch.nn.Module): """This function mimics audio clipping by clamping the input tensor. Arguments --------- clip_low : float The low end of amplitudes for which to clip the signal. clip_high : float The high end of amplitudes for which to clip the signal. clip_prob : float The probability that the batch of signals will have a portion clipped. By default, every batch has portions clipped. Example ------- >>> from speechbrain.dataio.dataio import read_audio >>> clipper = DoClip(clip_low=0.01, clip_high=0.01) >>> signal = read_audio('tests/samples/single-mic/example1.wav') >>> clipped_signal = clipper(signal.unsqueeze(0)) >>> "%.2f" % clipped_signal.max() '0.01' """ def __init__( self, clip_low=0.5, clip_high=1, clip_prob=1, ): super().__init__() self.clip_low = clip_low self.clip_high = clip_high self.clip_prob = clip_prob
[docs] def forward(self, waveforms): """ Arguments --------- waveforms : tensor Shape should be `[batch, time]` or `[batch, time, channels]`. Returns ------- Tensor of shape `[batch, time]` or `[batch, time, channels]` """ # Don't clip (return early) 1-`clip_prob` portion of the batches if torch.rand(1) > self.clip_prob: return waveforms.clone() # Randomly select clip value clipping_range = self.clip_high - self.clip_low clip_value = torch.rand(1,)[0] * clipping_range + self.clip_low # Apply clipping clipped_waveform = waveforms.clamp(-clip_value, clip_value) return clipped_waveform