Source code for speechbrain.pretrained.interfaces

"""Defines interfaces for simple inference with pretrained models

Authors:
 * Aku Rouhe 2021
 * Peter Plantinga 2021
 * Loren Lugosch 2020
 * Mirco Ravanelli 2020
 * Titouan Parcollet 2021
 * Abdel Heba 2021
 * Andreas Nautsch 2022, 2023
 * Pooneh Mousavi 2023
"""
import logging
import hashlib
import sys
import speechbrain
import torch
import torchaudio
import sentencepiece
from types import SimpleNamespace
from torch.nn import SyncBatchNorm
from torch.nn import DataParallel as DP
from hyperpyyaml import load_hyperpyyaml
from copy import copy
from speechbrain.pretrained.fetching import fetch
from speechbrain.dataio.preprocess import AudioNormalizer
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from speechbrain.utils.data_utils import split_path
from speechbrain.utils.distributed import run_on_main
from speechbrain.dataio.batch import PaddedBatch, PaddedData
from speechbrain.utils.data_pipeline import DataPipeline
from speechbrain.utils.callchains import lengths_arg_exists
from speechbrain.utils.superpowers import import_from_path
from speechbrain.dataio.dataio import length_to_mask
from speechbrain.processing.NMF import spectral_phase

logger = logging.getLogger(__name__)


[docs]def foreign_class( source, hparams_file="hyperparams.yaml", pymodule_file="custom.py", classname="CustomInterface", overrides={}, savedir=None, use_auth_token=False, download_only=False, **kwargs, ): """Fetch and load an interface from an outside source The source can be a location on the filesystem or online/huggingface The pymodule file should contain a class with the given classname. An instance of that class is returned. The idea is to have a custom Pretrained subclass in the file. The pymodule file is also added to the python path before the Hyperparams YAML file is loaded, so it can contain any custom implementations that are needed. The hyperparams file should contain a "modules" key, which is a dictionary of torch modules used for computation. The hyperparams file should contain a "pretrainer" key, which is a speechbrain.utils.parameter_transfer.Pretrainer Arguments --------- source : str or Path or FetchSource The location to use for finding the model. See ``speechbrain.pretrained.fetching.fetch`` for details. hparams_file : str The name of the hyperparameters file to use for constructing the modules necessary for inference. Must contain two keys: "modules" and "pretrainer", as described. pymodule_file : str The name of the Python file that should be fetched. classname : str The name of the Class, of which an instance is created and returned overrides : dict Any changes to make to the hparams file when it is loaded. savedir : str or Path Where to put the pretraining material. If not given, will use ./pretrained_models/<class-name>-hash(source). use_auth_token : bool (default: False) If true Hugginface's auth_token will be used to load private models from the HuggingFace Hub, default is False because the majority of models are public. download_only : bool (default: False) If true, class and instance creation is skipped. Returns ------- object An instance of a class with the given classname from the given pymodule file. """ if savedir is None: savedir = f"./pretrained_models/{classname}-{hashlib.md5(source.encode('UTF-8', errors='replace')).hexdigest()}" hparams_local_path = fetch( filename=hparams_file, source=source, savedir=savedir, overwrite=False, save_filename=None, use_auth_token=use_auth_token, revision=None, ) pymodule_local_path = fetch( filename=pymodule_file, source=source, savedir=savedir, overwrite=False, save_filename=None, use_auth_token=use_auth_token, revision=None, ) sys.path.append(str(pymodule_local_path.parent)) # Load the modules: with open(hparams_local_path) as fin: hparams = load_hyperpyyaml(fin, overrides) # Pretraining: pretrainer = hparams["pretrainer"] pretrainer.set_collect_in(savedir) # For distributed setups, have this here: run_on_main( pretrainer.collect_files, kwargs={"default_source": source}, ) # Load on the CPU. Later the params can be moved elsewhere by specifying if not download_only: # run_opts={"device": ...} pretrainer.load_collected(device="cpu") # Import class and create instance module = import_from_path(pymodule_local_path) cls = getattr(module, classname) return cls(modules=hparams["modules"], hparams=hparams, **kwargs)
[docs]class Pretrained(torch.nn.Module): """Takes a trained model and makes predictions on new data. This is a base class which handles some common boilerplate. It intentionally has an interface similar to ``Brain`` - these base classes handle similar things. Subclasses of Pretrained should implement the actual logic of how the pretrained system runs, and add methods with descriptive names (e.g. transcribe_file() for ASR). Pretrained is a torch.nn.Module so that methods like .to() or .eval() can work. Subclasses should provide a suitable forward() implementation: by convention, it should be a method that takes a batch of audio signals and runs the full model (as applicable). Arguments --------- modules : dict of str:torch.nn.Module pairs The Torch modules that make up the learned system. These can be treated in special ways (put on the right device, frozen, etc.). These are available as attributes under ``self.mods``, like self.mods.model(x) hparams : dict Each key:value pair should consist of a string key and a hyperparameter that is used within the overridden methods. These will be accessible via an ``hparams`` attribute, using "dot" notation: e.g., self.hparams.model(x). run_opts : dict Options parsed from command line. See ``speechbrain.parse_arguments()``. List that are supported here: * device * data_parallel_count * data_parallel_backend * distributed_launch * distributed_backend * jit_module_keys freeze_params : bool To freeze (requires_grad=False) parameters or not. Normally in inference you want to freeze the params. Also calls .eval() on all modules. """ HPARAMS_NEEDED = [] MODULES_NEEDED = [] def __init__( self, modules=None, hparams=None, run_opts=None, freeze_params=True ): super().__init__() # Arguments passed via the run opts dictionary. Set a limited # number of these, since some don't apply to inference. run_opt_defaults = { "device": "cpu", "data_parallel_count": -1, "data_parallel_backend": False, "distributed_launch": False, "distributed_backend": "nccl", "jit_module_keys": None, } for arg, default in run_opt_defaults.items(): if run_opts is not None and arg in run_opts: setattr(self, arg, run_opts[arg]) else: # If any arg from run_opt_defaults exist in hparams and # not in command line args "run_opts" if hparams is not None and arg in hparams: setattr(self, arg, hparams[arg]) else: setattr(self, arg, default) # Put modules on the right device, accessible with dot notation self.mods = torch.nn.ModuleDict(modules) for module in self.mods.values(): if module is not None: module.to(self.device) # Check MODULES_NEEDED and HPARAMS_NEEDED and # make hyperparams available with dot notation if self.HPARAMS_NEEDED and hparams is None: raise ValueError("Need to provide hparams dict.") if hparams is not None: # Also first check that all required params are found: for hp in self.HPARAMS_NEEDED: if hp not in hparams: raise ValueError(f"Need hparams['{hp}']") self.hparams = SimpleNamespace(**hparams) # Prepare modules for computation, e.g. jit self._prepare_modules(freeze_params) # Audio normalization self.audio_normalizer = hparams.get( "audio_normalizer", AudioNormalizer() ) def _prepare_modules(self, freeze_params): """Prepare modules for computation, e.g. jit. Arguments --------- freeze_params : bool Whether to freeze the parameters and call ``eval()``. """ # Make jit-able self._compile_jit() self._wrap_distributed() # If we don't want to backprop, freeze the pretrained parameters if freeze_params: self.mods.eval() for p in self.mods.parameters(): p.requires_grad = False
[docs] def load_audio(self, path, savedir="audio_cache", **kwargs): """Load an audio file with this model's input spec When using a speech model, it is important to use the same type of data, as was used to train the model. This means for example using the same sampling rate and number of channels. It is, however, possible to convert a file from a higher sampling rate to a lower one (downsampling). Similarly, it is simple to downmix a stereo file to mono. The path can be a local path, a web url, or a link to a huggingface repo. """ source, fl = split_path(path) kwargs = copy(kwargs) # shallow copy of references only channels_first = kwargs.pop( "channels_first", False ) # False as default value: SB consistent tensor format if kwargs: fetch_kwargs = dict() for key in [ "overwrite", "save_filename", "use_auth_token", "revision", "cache_dir", "silent_local_fetch", ]: if key in kwargs: fetch_kwargs[key] = kwargs.pop(key) path = fetch(fl, source=source, savedir=savedir, **fetch_kwargs) else: path = fetch(fl, source=source, savedir=savedir) signal, sr = torchaudio.load( str(path), channels_first=channels_first, **kwargs ) return self.audio_normalizer(signal, sr)
def _compile_jit(self): """Compile requested modules with ``torch.jit.script``.""" if self.jit_module_keys is None: return for name in self.jit_module_keys: if name not in self.mods: raise ValueError( "module " + name + " cannot be jit compiled because " "it is not defined in your hparams file." ) module = torch.jit.script(self.mods[name]) self.mods[name] = module.to(self.device) def _wrap_distributed(self): """Wrap modules with distributed wrapper when requested.""" if not self.distributed_launch and not self.data_parallel_backend: return elif self.distributed_launch: for name, module in self.mods.items(): if any(p.requires_grad for p in module.parameters()): # for ddp, all module must run on same GPU module = SyncBatchNorm.convert_sync_batchnorm(module) module = DDP(module, device_ids=[self.device]) self.mods[name] = module else: # data_parallel_backend for name, module in self.mods.items(): if any(p.requires_grad for p in module.parameters()): # if distributed_count = -1 then use all gpus # otherwise, specify the set of gpu to use if self.data_parallel_count == -1: module = DP(module) else: module = DP( module, [i for i in range(self.data_parallel_count)] ) self.mods[name] = module
[docs] @classmethod def from_hparams( cls, source, hparams_file="hyperparams.yaml", pymodule_file="custom.py", overrides={}, savedir=None, use_auth_token=False, revision=None, download_only=False, **kwargs, ): """Fetch and load based from outside source based on HyperPyYAML file The source can be a location on the filesystem or online/huggingface You can use the pymodule_file to include any custom implementations that are needed: if that file exists, then its location is added to sys.path before Hyperparams YAML is loaded, so it can be referenced in the YAML. The hyperparams file should contain a "modules" key, which is a dictionary of torch modules used for computation. The hyperparams file should contain a "pretrainer" key, which is a speechbrain.utils.parameter_transfer.Pretrainer Arguments --------- source : str or Path or FetchSource The location to use for finding the model. See ``speechbrain.pretrained.fetching.fetch`` for details. hparams_file : str The name of the hyperparameters file to use for constructing the modules necessary for inference. Must contain two keys: "modules" and "pretrainer", as described. pymodule_file : str A Python file can be fetched. This allows any custom implementations to be included. The file's location is added to sys.path before the hyperparams YAML file is loaded, so it can be referenced in YAML. This is optional, but has a default: "custom.py". If the default file is not found, this is simply ignored, but if you give a different filename, then this will raise in case the file is not found. overrides : dict Any changes to make to the hparams file when it is loaded. savedir : str or Path Where to put the pretraining material. If not given, will use ./pretrained_models/<class-name>-hash(source). use_auth_token : bool (default: False) If true Hugginface's auth_token will be used to load private models from the HuggingFace Hub, default is False because the majority of models are public. revision : str The model revision corresponding to the HuggingFace Hub model revision. This is particularly useful if you wish to pin your code to a particular version of a model hosted at HuggingFace. download_only : bool (default: False) If true, class and instance creation is skipped. """ if savedir is None: clsname = cls.__name__ savedir = f"./pretrained_models/{clsname}-{hashlib.md5(source.encode('UTF-8', errors='replace')).hexdigest()}" hparams_local_path = fetch( filename=hparams_file, source=source, savedir=savedir, overwrite=False, save_filename=None, use_auth_token=use_auth_token, revision=revision, ) try: pymodule_local_path = fetch( filename=pymodule_file, source=source, savedir=savedir, overwrite=False, save_filename=None, use_auth_token=use_auth_token, revision=revision, ) sys.path.append(str(pymodule_local_path.parent)) except ValueError: if pymodule_file == "custom.py": # The optional custom Python module file did not exist # and had the default name pass else: # Custom Python module file not found, but some other # filename than the default was given. raise # Load the modules: with open(hparams_local_path) as fin: hparams = load_hyperpyyaml(fin, overrides) # Pretraining: pretrainer = hparams["pretrainer"] pretrainer.set_collect_in(savedir) # For distributed setups, have this here: run_on_main( pretrainer.collect_files, kwargs={"default_source": source}, ) # Load on the CPU. Later the params can be moved elsewhere by specifying if not download_only: # run_opts={"device": ...} pretrainer.load_collected(device="cpu") # Now return the system return cls(hparams["modules"], hparams, **kwargs)
[docs]class EndToEndSLU(Pretrained): """An end-to-end SLU model. The class can be used either to run only the encoder (encode()) to extract features or to run the entire model (decode()) to map the speech to its semantics. Example ------- >>> from speechbrain.pretrained import EndToEndSLU >>> tmpdir = getfixture("tmpdir") >>> slu_model = EndToEndSLU.from_hparams( ... source="speechbrain/slu-timers-and-such-direct-librispeech-asr", ... savedir=tmpdir, ... ) >>> slu_model.decode_file("tests/samples/single-mic/example6.wav") "{'intent': 'SimpleMath', 'slots': {'number1': 37.67, 'number2': 75.7, 'op': ' minus '}}" """ HPARAMS_NEEDED = ["tokenizer", "asr_model_source"] MODULES_NEEDED = ["slu_enc", "beam_searcher"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tokenizer = self.hparams.tokenizer self.asr_model = EncoderDecoderASR.from_hparams( source=self.hparams.asr_model_source, run_opts={"device": self.device}, )
[docs] def decode_file(self, path, **kwargs): """Maps the given audio file to a string representing the semantic dictionary for the utterance. Arguments --------- path : str Path to audio file to decode. Returns ------- str The predicted semantics. """ waveform = self.load_audio(path, **kwargs) waveform = waveform.to(self.device) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) predicted_words, predicted_tokens = self.decode_batch(batch, rel_length) return predicted_words[0]
[docs] def encode_batch(self, wavs, wav_lens): """Encodes the input audio into a sequence of hidden states Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- torch.Tensor The encoded batch """ wavs = wavs.float() wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) ASR_encoder_out = self.asr_model.encode_batch(wavs.detach(), wav_lens) encoder_out = self.mods.slu_enc(ASR_encoder_out) return encoder_out
[docs] def decode_batch(self, wavs, wav_lens): """Maps the input audio to its semantics Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- list Each waveform in the batch decoded. tensor Each predicted token id. """ with torch.no_grad(): wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) encoder_out = self.encode_batch(wavs, wav_lens) predicted_tokens, scores = self.mods.beam_searcher( encoder_out, wav_lens ) predicted_words = [ self.tokenizer.decode_ids(token_seq) for token_seq in predicted_tokens ] return predicted_words, predicted_tokens
[docs] def forward(self, wavs, wav_lens): """Runs full decoding - note: no gradients through decoding""" return self.decode_batch(wavs, wav_lens)
[docs]class EncoderDecoderASR(Pretrained): """A ready-to-use Encoder-Decoder ASR model The class can be used either to run only the encoder (encode()) to extract features or to run the entire encoder-decoder model (transcribe()) to transcribe speech. The given YAML must contain the fields specified in the *_NEEDED[] lists. Example ------- >>> from speechbrain.pretrained import EncoderDecoderASR >>> tmpdir = getfixture("tmpdir") >>> asr_model = EncoderDecoderASR.from_hparams( ... source="speechbrain/asr-crdnn-rnnlm-librispeech", ... savedir=tmpdir, ... ) >>> asr_model.transcribe_file("tests/samples/single-mic/example2.flac") "MY FATHER HAS REVEALED THE CULPRIT'S NAME" """ HPARAMS_NEEDED = ["tokenizer"] MODULES_NEEDED = ["encoder", "decoder"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tokenizer = self.hparams.tokenizer
[docs] def transcribe_file(self, path, **kwargs): """Transcribes the given audiofile into a sequence of words. Arguments --------- path : str Path to audio file which to transcribe. Returns ------- str The audiofile transcription produced by this ASR system. """ waveform = self.load_audio(path, **kwargs) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) predicted_words, predicted_tokens = self.transcribe_batch( batch, rel_length ) return predicted_words[0]
[docs] def encode_batch(self, wavs, wav_lens): """Encodes the input audio into a sequence of hidden states The waveforms should already be in the model's desired format. You can call: ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- torch.Tensor The encoded batch """ wavs = wavs.float() wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) encoder_out = self.mods.encoder(wavs, wav_lens) return encoder_out
[docs] def transcribe_batch(self, wavs, wav_lens): """Transcribes the input audio into a sequence of words The waveforms should already be in the model's desired format. You can call: ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- list Each waveform in the batch transcribed. tensor Each predicted token id. """ with torch.no_grad(): wav_lens = wav_lens.to(self.device) encoder_out = self.encode_batch(wavs, wav_lens) predicted_tokens, scores = self.mods.decoder(encoder_out, wav_lens) predicted_words = [ self.tokenizer.decode_ids(token_seq) for token_seq in predicted_tokens ] return predicted_words, predicted_tokens
[docs] def forward(self, wavs, wav_lens): """Runs full transcription - note: no gradients through decoding""" return self.transcribe_batch(wavs, wav_lens)
[docs]class WaveformEncoder(Pretrained): """A ready-to-use waveformEncoder model It can be used to wrap different embedding models such as SSL ones (wav2vec2) or speaker ones (Xvector) etc. Two functions are available: encode_batch and encode_file. They can be used to obtain the embeddings directly from an audio file or from a batch of audio tensors respectively. The given YAML must contain the fields specified in the *_NEEDED[] lists. Example ------- >>> from speechbrain.pretrained import WaveformEncoder >>> tmpdir = getfixture("tmpdir") >>> ssl_model = WaveformEncoder.from_hparams( ... source="speechbrain/ssl-wav2vec2-base-libri", ... savedir=tmpdir, ... ) # doctest: +SKIP >>> ssl_model.encode_file("samples/audio_samples/example_fr.wav") # doctest: +SKIP """ MODULES_NEEDED = ["encoder"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
[docs] def encode_file(self, path, **kwargs): """Encode the given audiofile into a sequence of embeddings. Arguments --------- path : str Path to audio file which to encode. Returns ------- torch.Tensor The audiofile embeddings produced by this system. """ waveform = self.load_audio(path, **kwargs) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) results = self.encode_batch(batch, rel_length) return results["embeddings"]
[docs] def encode_batch(self, wavs, wav_lens): """Encodes the input audio into a sequence of hidden states The waveforms should already be in the model's desired format. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- torch.Tensor The encoded batch """ wavs = wavs.float() wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) encoder_out = self.mods.encoder(wavs, wav_lens) return encoder_out
[docs] def forward(self, wavs, wav_lens): """Runs the encoder""" return self.encode_batch(wavs, wav_lens)
[docs]class EncoderASR(Pretrained): """A ready-to-use Encoder ASR model The class can be used either to run only the encoder (encode()) to extract features or to run the entire encoder + decoder function model (transcribe()) to transcribe speech. The given YAML must contain the fields specified in the *_NEEDED[] lists. Example ------- >>> from speechbrain.pretrained import EncoderASR >>> tmpdir = getfixture("tmpdir") >>> asr_model = EncoderASR.from_hparams( ... source="speechbrain/asr-wav2vec2-commonvoice-fr", ... savedir=tmpdir, ... ) # doctest: +SKIP >>> asr_model.transcribe_file("samples/audio_samples/example_fr.wav") # doctest: +SKIP """ HPARAMS_NEEDED = ["tokenizer", "decoding_function"] MODULES_NEEDED = ["encoder"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tokenizer = self.hparams.tokenizer self.decoding_function = self.hparams.decoding_function
[docs] def transcribe_file(self, path, **kwargs): """Transcribes the given audiofile into a sequence of words. Arguments --------- path : str Path to audio file which to transcribe. Returns ------- str The audiofile transcription produced by this ASR system. """ waveform = self.load_audio(path, **kwargs) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) predicted_words, predicted_tokens = self.transcribe_batch( batch, rel_length ) return str(predicted_words[0])
[docs] def encode_batch(self, wavs, wav_lens): """Encodes the input audio into a sequence of hidden states The waveforms should already be in the model's desired format. You can call: ``normalized = EncoderASR.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- torch.Tensor The encoded batch """ wavs = wavs.float() wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) encoder_out = self.mods.encoder(wavs, wav_lens) return encoder_out
[docs] def transcribe_batch(self, wavs, wav_lens): """Transcribes the input audio into a sequence of words The waveforms should already be in the model's desired format. You can call: ``normalized = EncoderASR.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- list Each waveform in the batch transcribed. tensor Each predicted token id. """ with torch.no_grad(): wav_lens = wav_lens.to(self.device) encoder_out = self.encode_batch(wavs, wav_lens) predictions = self.decoding_function(encoder_out, wav_lens) if isinstance( self.tokenizer, speechbrain.dataio.encoder.CTCTextEncoder ): predicted_words = [ "".join(self.tokenizer.decode_ndim(token_seq)) for token_seq in predictions ] elif isinstance( self.tokenizer, sentencepiece.SentencePieceProcessor ): predicted_words = [ self.tokenizer.decode_ids(token_seq) for token_seq in predictions ] else: sys.exit( "The tokenizer must be sentencepiece or CTCTextEncoder" ) return predicted_words, predictions
[docs] def forward(self, wavs, wav_lens): """Runs the encoder""" return self.encode_batch(wavs, wav_lens)
[docs]class EncoderClassifier(Pretrained): """A ready-to-use class for utterance-level classification (e.g, speaker-id, language-id, emotion recognition, keyword spotting, etc). The class assumes that an encoder called "embedding_model" and a model called "classifier" are defined in the yaml file. If you want to convert the predicted index into a corresponding text label, please provide the path of the label_encoder in a variable called 'lab_encoder_file' within the yaml. The class can be used either to run only the encoder (encode_batch()) to extract embeddings or to run a classification step (classify_batch()). ``` Example ------- >>> import torchaudio >>> from speechbrain.pretrained import EncoderClassifier >>> # Model is downloaded from the speechbrain HuggingFace repo >>> tmpdir = getfixture("tmpdir") >>> classifier = EncoderClassifier.from_hparams( ... source="speechbrain/spkrec-ecapa-voxceleb", ... savedir=tmpdir, ... ) >>> classifier.hparams.label_encoder.ignore_len() >>> # Compute embeddings >>> signal, fs = torchaudio.load("tests/samples/single-mic/example1.wav") >>> embeddings = classifier.encode_batch(signal) >>> # Classification >>> prediction = classifier.classify_batch(signal) """ MODULES_NEEDED = [ "compute_features", "mean_var_norm", "embedding_model", "classifier", ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
[docs] def encode_batch(self, wavs, wav_lens=None, normalize=False): """Encodes the input audio into a single vector embedding. The waveforms should already be in the model's desired format. You can call: ``normalized = <this>.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. Make sure the sample rate is fs=16000 Hz. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. normalize : bool If True, it normalizes the embeddings with the statistics contained in mean_var_norm_emb. Returns ------- torch.Tensor The encoded batch """ # Manage single waveforms in input if len(wavs.shape) == 1: wavs = wavs.unsqueeze(0) # Assign full length if wav_lens is not assigned if wav_lens is None: wav_lens = torch.ones(wavs.shape[0], device=self.device) # Storing waveform in the specified device wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) wavs = wavs.float() # Computing features and embeddings feats = self.mods.compute_features(wavs) feats = self.mods.mean_var_norm(feats, wav_lens) embeddings = self.mods.embedding_model(feats, wav_lens) if normalize: embeddings = self.hparams.mean_var_norm_emb( embeddings, torch.ones(embeddings.shape[0], device=self.device) ) return embeddings
[docs] def classify_batch(self, wavs, wav_lens=None): """Performs classification on the top of the encoded features. It returns the posterior probabilities, the index and, if the label encoder is specified it also the text label. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. Make sure the sample rate is fs=16000 Hz. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- out_prob The log posterior probabilities of each class ([batch, N_class]) score: It is the value of the log-posterior for the best class ([batch,]) index The indexes of the best class ([batch,]) text_lab: List with the text labels corresponding to the indexes. (label encoder should be provided). """ emb = self.encode_batch(wavs, wav_lens) out_prob = self.mods.classifier(emb).squeeze(1) score, index = torch.max(out_prob, dim=-1) text_lab = self.hparams.label_encoder.decode_torch(index) return out_prob, score, index, text_lab
[docs] def classify_file(self, path, **kwargs): """Classifies the given audiofile into the given set of labels. Arguments --------- path : str Path to audio file to classify. Returns ------- out_prob The log posterior probabilities of each class ([batch, N_class]) score: It is the value of the log-posterior for the best class ([batch,]) index The indexes of the best class ([batch,]) text_lab: List with the text labels corresponding to the indexes. (label encoder should be provided). """ waveform = self.load_audio(path, **kwargs) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) emb = self.encode_batch(batch, rel_length) out_prob = self.mods.classifier(emb).squeeze(1) score, index = torch.max(out_prob, dim=-1) text_lab = self.hparams.label_encoder.decode_torch(index) return out_prob, score, index, text_lab
[docs] def forward(self, wavs, wav_lens=None): """Runs the classification""" return self.classify_batch(wavs, wav_lens)
[docs]class SpeakerRecognition(EncoderClassifier): """A ready-to-use model for speaker recognition. It can be used to perform speaker verification with verify_batch(). ``` Example ------- >>> import torchaudio >>> from speechbrain.pretrained import SpeakerRecognition >>> # Model is downloaded from the speechbrain HuggingFace repo >>> tmpdir = getfixture("tmpdir") >>> verification = SpeakerRecognition.from_hparams( ... source="speechbrain/spkrec-ecapa-voxceleb", ... savedir=tmpdir, ... ) >>> # Perform verification >>> signal, fs = torchaudio.load("tests/samples/single-mic/example1.wav") >>> signal2, fs = torchaudio.load("tests/samples/single-mic/example2.flac") >>> score, prediction = verification.verify_batch(signal, signal2) """ MODULES_NEEDED = [ "compute_features", "mean_var_norm", "embedding_model", "mean_var_norm_emb", ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.similarity = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)
[docs] def verify_batch( self, wavs1, wavs2, wav1_lens=None, wav2_lens=None, threshold=0.25 ): """Performs speaker verification with cosine distance. It returns the score and the decision (0 different speakers, 1 same speakers). Arguments --------- wavs1 : Torch.Tensor Tensor containing the speech waveform1 (batch, time). Make sure the sample rate is fs=16000 Hz. wavs2 : Torch.Tensor Tensor containing the speech waveform2 (batch, time). Make sure the sample rate is fs=16000 Hz. wav1_lens: Torch.Tensor Tensor containing the relative length for each sentence in the length (e.g., [0.8 0.6 1.0]) wav2_lens: Torch.Tensor Tensor containing the relative length for each sentence in the length (e.g., [0.8 0.6 1.0]) threshold: Float Threshold applied to the cosine distance to decide if the speaker is different (0) or the same (1). Returns ------- score The score associated to the binary verification output (cosine distance). prediction The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise. """ emb1 = self.encode_batch(wavs1, wav1_lens, normalize=True) emb2 = self.encode_batch(wavs2, wav2_lens, normalize=True) score = self.similarity(emb1, emb2) return score, score > threshold
[docs] def verify_files(self, path_x, path_y, **kwargs): """Speaker verification with cosine distance Returns the score and the decision (0 different speakers, 1 same speakers). Returns ------- score The score associated to the binary verification output (cosine distance). prediction The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise. """ waveform_x = self.load_audio(path_x, **kwargs) waveform_y = self.load_audio(path_y, **kwargs) # Fake batches: batch_x = waveform_x.unsqueeze(0) batch_y = waveform_y.unsqueeze(0) # Verify: score, decision = self.verify_batch(batch_x, batch_y) # Squeeze: return score[0], decision[0]
[docs]class VAD(Pretrained): """A ready-to-use class for Voice Activity Detection (VAD) using a pre-trained model. Example ------- >>> import torchaudio >>> from speechbrain.pretrained import VAD >>> # Model is downloaded from the speechbrain HuggingFace repo >>> tmpdir = getfixture("tmpdir") >>> VAD = VAD.from_hparams( ... source="speechbrain/vad-crdnn-libriparty", ... savedir=tmpdir, ... ) >>> # Perform VAD >>> boundaries = VAD.get_speech_segments("tests/samples/single-mic/example1.wav") """ HPARAMS_NEEDED = ["sample_rate", "time_resolution", "device"] MODULES_NEEDED = ["compute_features", "mean_var_norm", "model"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.time_resolution = self.hparams.time_resolution self.sample_rate = self.hparams.sample_rate self.device = self.hparams.device
[docs] def get_speech_prob_file( self, audio_file, large_chunk_size=30, small_chunk_size=10, overlap_small_chunk=False, ): """Outputs the frame-level speech probability of the input audio file using the neural model specified in the hparam file. To make this code both parallelizable and scalable to long sequences, it uses a double-windowing approach. First, we sequentially read non-overlapping large chunks of the input signal. We then split the large chunks into smaller chunks and we process them in parallel. Arguments --------- audio_file: path Path of the audio file containing the recording. The file is read with torchaudio. large_chunk_size: float Size (in seconds) of the large chunks that are read sequentially from the input audio file. small_chunk_size: Size (in seconds) of the small chunks extracted from the large ones. The audio signal is processed in parallel within the small chunks. Note that large_chunk_size/small_chunk_size must be an integer. overlap_small_chunk: bool True, creates overlapped small chunks. The probabilities of the overlapped chunks are combined using hamming windows. Returns ------- prob_vad: torch.Tensor Tensor containing the frame-level speech probabilities for the input audio file. """ # Getting the total size of the input file sample_rate, audio_len = self._get_audio_info(audio_file) if sample_rate != self.sample_rate: raise ValueError( "The detected sample rate is different from that set in the hparam file" ) # Computing the length (in samples) of the large and small chunks long_chunk_len = int(sample_rate * large_chunk_size) small_chunk_len = int(sample_rate * small_chunk_size) # Setting the step size of the small chunk (50% overlapping windows are supported) small_chunk_step = small_chunk_size if overlap_small_chunk: small_chunk_step = small_chunk_size / 2 # Computing the length (in sample) of the small_chunk step size small_chunk_len_step = int(sample_rate * small_chunk_step) # Loop over big chunks prob_chunks = [] last_chunk = False begin_sample = 0 while True: # Reading the big chunk large_chunk, fs = torchaudio.load( audio_file, frame_offset=begin_sample, num_frames=long_chunk_len ) large_chunk = large_chunk.to(self.device) # Manage padding of the last small chunk if last_chunk or large_chunk.shape[-1] < small_chunk_len: padding = torch.zeros( 1, small_chunk_len, device=large_chunk.device ) large_chunk = torch.cat([large_chunk, padding], dim=1) # Splitting the big chunk into smaller (overlapped) ones small_chunks = torch.nn.functional.unfold( large_chunk.unsqueeze(1).unsqueeze(2), kernel_size=(1, small_chunk_len), stride=(1, small_chunk_len_step), ) small_chunks = small_chunks.squeeze(0).transpose(0, 1) # Getting (in parallel) the frame-level speech probabilities small_chunks_prob = self.get_speech_prob_chunk(small_chunks) small_chunks_prob = small_chunks_prob[:, :-1, :] # Manage overlapping chunks if overlap_small_chunk: small_chunks_prob = self._manage_overlapped_chunks( small_chunks_prob ) # Prepare for folding small_chunks_prob = small_chunks_prob.permute(2, 1, 0) # Computing lengths in samples out_len = int( large_chunk.shape[-1] / (sample_rate * self.time_resolution) ) kernel_len = int(small_chunk_size / self.time_resolution) step_len = int(small_chunk_step / self.time_resolution) # Folding the frame-level predictions small_chunks_prob = torch.nn.functional.fold( small_chunks_prob, output_size=(1, out_len), kernel_size=(1, kernel_len), stride=(1, step_len), ) # Appending the frame-level speech probabilities of the large chunk small_chunks_prob = small_chunks_prob.squeeze(1).transpose(-1, -2) prob_chunks.append(small_chunks_prob) # Check stop condition if last_chunk: break # Update counter to process the next big chunk begin_sample = begin_sample + long_chunk_len # Check if the current chunk is the last one if begin_sample + long_chunk_len > audio_len: last_chunk = True # Converting the list to a tensor prob_vad = torch.cat(prob_chunks, dim=1) last_elem = int(audio_len / (self.time_resolution * sample_rate)) prob_vad = prob_vad[:, 0:last_elem, :] return prob_vad
def _manage_overlapped_chunks(self, small_chunks_prob): """This support function manages overlapped the case in which the small chunks have a 50% overlap.""" # Weighting the frame-level probabilities with a hamming window # reduces uncertainty when overlapping chunks are used. hamming_window = torch.hamming_window( small_chunks_prob.shape[1], device=self.device ) # First and last chunks require special care half_point = int(small_chunks_prob.shape[1] / 2) small_chunks_prob[0, half_point:] = small_chunks_prob[ 0, half_point: ] * hamming_window[half_point:].unsqueeze(1) small_chunks_prob[-1, 0:half_point] = small_chunks_prob[ -1, 0:half_point ] * hamming_window[0:half_point].unsqueeze(1) # Applying the window to all the other probabilities small_chunks_prob[1:-1] = small_chunks_prob[ 1:-1 ] * hamming_window.unsqueeze(0).unsqueeze(2) return small_chunks_prob
[docs] def get_speech_prob_chunk(self, wavs, wav_lens=None): """Outputs the frame-level posterior probability for the input audio chunks Outputs close to zero refers to time steps with a low probability of speech activity, while outputs closer to one likely contain speech. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. Make sure the sample rate is fs=16000 Hz. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- torch.Tensor The encoded batch """ # Manage single waveforms in input if len(wavs.shape) == 1: wavs = wavs.unsqueeze(0) # Assign full length if wav_lens is not assigned if wav_lens is None: wav_lens = torch.ones(wavs.shape[0], device=self.device) # Storing waveform in the specified device wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) wavs = wavs.float() # Computing features and embeddings feats = self.mods.compute_features(wavs) feats = self.mods.mean_var_norm(feats, wav_lens) outputs = self.mods.cnn(feats) outputs = outputs.reshape( outputs.shape[0], outputs.shape[1], outputs.shape[2] * outputs.shape[3], ) outputs, h = self.mods.rnn(outputs) outputs = self.mods.dnn(outputs) output_prob = torch.sigmoid(outputs) return output_prob
[docs] def apply_threshold( self, vad_prob, activation_th=0.5, deactivation_th=0.25 ): """Scans the frame-level speech probabilities and applies a threshold on them. Speech starts when a value larger than activation_th is detected, while it ends when observing a value lower than the deactivation_th. Arguments --------- vad_prob: torch.Tensor Frame-level speech probabilities. activation_th: float Threshold for starting a speech segment. deactivation_th: float Threshold for ending a speech segment. Returns ------- vad_th: torch.Tensor Tensor containing 1 for speech regions and 0 for non-speech regions. """ vad_activation = (vad_prob >= activation_th).int() vad_deactivation = (vad_prob >= deactivation_th).int() vad_th = vad_activation + vad_deactivation # Loop over batches and time steps for batch in range(vad_th.shape[0]): for time_step in range(vad_th.shape[1] - 1): if ( vad_th[batch, time_step] == 2 and vad_th[batch, time_step + 1] == 1 ): vad_th[batch, time_step + 1] = 2 vad_th[vad_th == 1] = 0 vad_th[vad_th == 2] = 1 return vad_th
[docs] def get_boundaries(self, prob_th, output_value="seconds"): """Computes the time boundaries where speech activity is detected. It takes in input frame-level binary decisions (1 for speech, 0 for non-speech) and outputs the begin/end second (or sample) of each detected speech region. Arguments --------- prob_th: torch.Tensor Frame-level binary decisions (1 for speech frame, 0 for a non-speech one). The tensor can be obtained from apply_threshold. output_value: 'seconds' or 'samples' When the option 'seconds' is set, the returned boundaries are in seconds, otherwise, it reports them in samples. Returns ------- boundaries: torch.Tensor Tensor containing the start second (or sample) of speech segments in even positions and their corresponding end in odd positions (e.g, [1.0, 1.5, 5,.0 6.0] means that we have two speech segment; one from 1.0 to 1.5 seconds and another from 5.0 to 6.0 seconds). """ # Shifting frame-levels binary decision by 1 # This allows detecting changes in speech/non-speech activities prob_th_shifted = torch.roll(prob_th, dims=1, shifts=1) prob_th_shifted[:, 0, :] = 0 prob_th = prob_th + prob_th_shifted # Needed to first and last time step prob_th[:, 0, :] = (prob_th[:, 0, :] >= 1).int() prob_th[:, -1, :] = (prob_th[:, -1, :] >= 1).int() # Fix edge cases (when a speech starts in the last frames) if (prob_th == 1).nonzero().shape[0] % 2 == 1: prob_th = torch.cat( ( prob_th, torch.Tensor([1.0]) .unsqueeze(0) .unsqueeze(2) .to(self.device), ), dim=1, ) # Where prob_th is 1 there is a change indexes = (prob_th == 1).nonzero()[:, 1].reshape(-1, 2) # Remove 1 from end samples indexes[:, -1] = indexes[:, -1] - 1 # From indexes to samples seconds = (indexes * self.time_resolution).float() samples = (self.sample_rate * seconds).round().int() if output_value == "seconds": boundaries = seconds else: boundaries = samples return boundaries
[docs] def merge_close_segments(self, boundaries, close_th=0.250): """Merges segments that are shorter than the given threshold. Arguments --------- boundaries : str Tensor containing the speech boundaries. It can be derived using the get_boundaries method. close_th: float If the distance between boundaries is smaller than close_th, the segments will be merged. Returns ------- new_boundaries The new boundaries with the merged segments. """ new_boundaries = [] # Single segment case if boundaries.shape[0] == 0: return boundaries # Getting beg and end of previous segment prev_beg_seg = boundaries[0, 0].float() prev_end_seg = boundaries[0, 1].float() # Process all the segments for i in range(1, boundaries.shape[0]): beg_seg = boundaries[i, 0] segment_distance = beg_seg - prev_end_seg # Merging close segments if segment_distance <= close_th: prev_end_seg = boundaries[i, 1] else: # Appending new segments new_boundaries.append([prev_beg_seg, prev_end_seg]) prev_beg_seg = beg_seg prev_end_seg = boundaries[i, 1] new_boundaries.append([prev_beg_seg, prev_end_seg]) new_boundaries = torch.FloatTensor(new_boundaries).to(boundaries.device) return new_boundaries
[docs] def remove_short_segments(self, boundaries, len_th=0.250): """Removes segments that are too short. Arguments --------- boundaries : torch.Tensor Tensor containing the speech boundaries. It can be derived using the get_boundaries method. len_th: float If the length of the segment is smaller than close_th, the segments will be merged. Returns ------- new_boundaries The new boundaries without the short segments. """ new_boundaries = [] # Process the segments for i in range(boundaries.shape[0]): # Computing segment length seg_len = boundaries[i, 1] - boundaries[i, 0] # Accept segment only if longer than len_th if seg_len > len_th: new_boundaries.append([boundaries[i, 0], boundaries[i, 1]]) new_boundaries = torch.FloatTensor(new_boundaries).to(boundaries.device) return new_boundaries
[docs] def save_boundaries( self, boundaries, save_path=None, print_boundaries=True, audio_file=None ): """Saves the boundaries on a file (and/or prints them) in a readable format. Arguments --------- boundaries: torch.Tensor Tensor containing the speech boundaries. It can be derived using the get_boundaries method. save_path: path When to store the text file containing the speech/non-speech intervals. print_boundaries: Bool Prints the speech/non-speech intervals in the standard outputs. audio_file: path Path of the audio file containing the recording. The file is read with torchaudio. It is used here to detect the length of the signal. """ # Create a new file if needed if save_path is not None: f = open(save_path, mode="w", encoding="utf-8") # Getting the total size of the input file if audio_file is not None: sample_rate, audio_len = self._get_audio_info(audio_file) audio_len = audio_len / sample_rate # Setting the rights format for second- or sample-based boundaries if boundaries.dtype == torch.int: value_format = "% i" else: value_format = "% .2f " # Printing speech and non-speech intervals last_end = 0 cnt_seg = 0 for i in range(boundaries.shape[0]): begin_value = boundaries[i, 0] end_value = boundaries[i, 1] if last_end != begin_value: cnt_seg = cnt_seg + 1 print_str = ( "segment_%03d " + value_format + value_format + "NON_SPEECH" ) if print_boundaries: print(print_str % (cnt_seg, last_end, begin_value)) if save_path is not None: f.write(print_str % (cnt_seg, last_end, begin_value) + "\n") cnt_seg = cnt_seg + 1 print_str = "segment_%03d " + value_format + value_format + "SPEECH" if print_boundaries: print(print_str % (cnt_seg, begin_value, end_value)) if save_path is not None: f.write(print_str % (cnt_seg, begin_value, end_value) + "\n") last_end = end_value # Managing last segment if audio_file is not None: if last_end < audio_len: cnt_seg = cnt_seg + 1 print_str = ( "segment_%03d " + value_format + value_format + "NON_SPEECH" ) if print_boundaries: print(print_str % (cnt_seg, end_value, audio_len)) if save_path is not None: f.write(print_str % (cnt_seg, end_value, audio_len) + "\n") if save_path is not None: f.close()
[docs] def energy_VAD( self, audio_file, boundaries, activation_th=0.5, deactivation_th=0.0, eps=1e-6, ): """Applies energy-based VAD within the detected speech segments.The neural network VAD often creates longer segments and tends to merge segments that are close with each other. The energy VAD post-processes can be useful for having a fine-grained voice activity detection. The energy VAD computes the energy within the small chunks. The energy is normalized within the segment to have mean 0.5 and +-0.5 of std. This helps to set the energy threshold. Arguments --------- audio_file: path Path of the audio file containing the recording. The file is read with torchaudio. boundaries : torch.Tensor Tensor containing the speech boundaries. It can be derived using the get_boundaries method. activation_th: float A new speech segment is started it the energy is above activation_th. deactivation_th: float The segment is considered ended when the energy is <= deactivation_th. eps: float Small constant for numerical stability. Returns ------- new_boundaries The new boundaries that are post-processed by the energy VAD. """ # Getting the total size of the input file sample_rate, audio_len = self._get_audio_info(audio_file) if sample_rate != self.sample_rate: raise ValueError( "The detected sample rate is different from that set in the hparam file" ) # Computing the chunk length of the energy window chunk_len = int(self.time_resolution * sample_rate) new_boundaries = [] # Processing speech segments for i in range(boundaries.shape[0]): begin_sample = int(boundaries[i, 0] * sample_rate) end_sample = int(boundaries[i, 1] * sample_rate) seg_len = end_sample - begin_sample # Reading the speech segment segment, _ = torchaudio.load( audio_file, frame_offset=begin_sample, num_frames=seg_len ) # Create chunks segment_chunks = self.create_chunks( segment, chunk_size=chunk_len, chunk_stride=chunk_len ) # Energy computation within each chunk energy_chunks = segment_chunks.abs().sum(-1) + eps energy_chunks = energy_chunks.log() # Energy normalization energy_chunks = ( (energy_chunks - energy_chunks.mean()) / (2 * energy_chunks.std()) ) + 0.5 energy_chunks = energy_chunks.unsqueeze(0).unsqueeze(2) # Apply threshold based on the energy value energy_vad = self.apply_threshold( energy_chunks, activation_th=activation_th, deactivation_th=deactivation_th, ) # Get the boundaries energy_boundaries = self.get_boundaries( energy_vad, output_value="seconds" ) # Get the final boundaries in the original signal for j in range(energy_boundaries.shape[0]): start_en = boundaries[i, 0] + energy_boundaries[j, 0] end_end = boundaries[i, 0] + energy_boundaries[j, 1] new_boundaries.append([start_en, end_end]) # Convert boundaries to tensor new_boundaries = torch.FloatTensor(new_boundaries).to(boundaries.device) return new_boundaries
[docs] def create_chunks(self, x, chunk_size=16384, chunk_stride=16384): """Splits the input into smaller chunks of size chunk_size with an overlap chunk_stride. The chunks are concatenated over the batch axis. Arguments --------- x: torch.Tensor Signal to split into chunks. chunk_size : str The size of each chunk. chunk_stride: The stride (hop) of each chunk. Returns ------- x: torch.Tensor A new tensors with the chunks derived from the input signal. """ x = x.unfold(1, chunk_size, chunk_stride) x = x.reshape(x.shape[0] * x.shape[1], -1) return x
def _get_audio_info(self, audio_file): """Returns the sample rate and the length of the input audio file""" # Getting the total size of the input file metadata = torchaudio.info(audio_file) sample_rate = metadata.sample_rate audio_len = metadata.num_frames return sample_rate, audio_len
[docs] def upsample_VAD(self, vad_out, audio_file, time_resolution=0.01): """Upsamples the output of the vad to help visualization. It creates a signal that is 1 when there is speech and 0 when there is no speech. The vad signal has the same resolution as the input one and can be opened with it (e.g, using audacity) to visually figure out VAD regions. Arguments --------- vad_out: torch.Tensor Tensor containing 1 for each frame of speech and 0 for each non-speech frame. audio_file: path The original audio file used to compute vad_out time_resolution : float Time resolution of the vad_out signal. Returns ------- vad_signal The upsampled version of the vad_out tensor. """ # Getting the total size of the input file sample_rate, sig_len = self._get_audio_info(audio_file) if sample_rate != self.sample_rate: raise ValueError( "The detected sample rate is different from that set in the hparam file" ) beg_samp = 0 step_size = int(time_resolution * sample_rate) end_samp = step_size index = 0 # Initialize upsampled signal vad_signal = torch.zeros(1, sig_len, device=vad_out.device) # Upsample signal while end_samp < sig_len: vad_signal[0, beg_samp:end_samp] = vad_out[0, index, 0] index = index + 1 beg_samp = beg_samp + step_size end_samp = beg_samp + step_size return vad_signal
[docs] def upsample_boundaries(self, boundaries, audio_file): """Based on the input boundaries, this method creates a signal that is 1 when there is speech and 0 when there is no speech. The vad signal has the same resolution as the input one and can be opened with it (e.g, using audacity) to visually figure out VAD regions. Arguments --------- boundaries: torch.Tensor Tensor containing the boundaries of the speech segments. audio_file: path The original audio file used to compute vad_out Returns ------- vad_signal The output vad signal with the same resolution of the input one. """ # Getting the total size of the input file sample_rate, sig_len = self._get_audio_info(audio_file) if sample_rate != self.sample_rate: raise ValueError( "The detected sample rate is different from that set in the hparam file" ) # Initialization of the output signal vad_signal = torch.zeros(1, sig_len, device=boundaries.device) # Composing the vad signal from boundaries for i in range(boundaries.shape[0]): beg_sample = int(boundaries[i, 0] * sample_rate) end_sample = int(boundaries[i, 1] * sample_rate) vad_signal[0, beg_sample:end_sample] = 1.0 return vad_signal
[docs] def double_check_speech_segments( self, boundaries, audio_file, speech_th=0.5 ): """Takes in input the boundaries of the detected speech segments and double checks (using the neural VAD) that they actually contain speech. Arguments --------- boundaries: torch.Tensor Tensor containing the boundaries of the speech segments. audio_file: path The original audio file used to compute vad_out. speech_th: float Threshold on the mean posterior probability over which speech is confirmed. Below that threshold, the segment is re-assigned to a non-speech region. Returns ------- new_boundaries The boundaries of the segments where speech activity is confirmed. """ # Getting the total size of the input file sample_rate, sig_len = self._get_audio_info(audio_file) # Double check the segments new_boundaries = [] for i in range(boundaries.shape[0]): beg_sample = int(boundaries[i, 0] * sample_rate) end_sample = int(boundaries[i, 1] * sample_rate) len_seg = end_sample - beg_sample # Read the candidate speech segment segment, fs = torchaudio.load( audio_file, frame_offset=beg_sample, num_frames=len_seg ) speech_prob = self.get_speech_prob_chunk(segment) if speech_prob.mean() > speech_th: # Accept this as a speech segment new_boundaries.append([boundaries[i, 0], boundaries[i, 1]]) # Convert boundaries from list to tensor new_boundaries = torch.FloatTensor(new_boundaries).to(boundaries.device) return new_boundaries
[docs] def get_segments( self, boundaries, audio_file, before_margin=0.1, after_margin=0.1 ): """Returns a list containing all the detected speech segments. Arguments --------- boundaries: torch.Tensor Tensor containing the boundaries of the speech segments. audio_file: path The original audio file used to compute vad_out. before_margin: float Used to cut the segments samples a bit before the detected margin. after_margin: float Use to cut the segments samples a bit after the detected margin. Returns ------- segments: list List containing the detected speech segments """ sample_rate, sig_len = self._get_audio_info(audio_file) if sample_rate != self.sample_rate: raise ValueError( "The detected sample rate is different from that set in the hparam file" ) segments = [] for i in range(boundaries.shape[0]): beg_sample = boundaries[i, 0] * sample_rate end_sample = boundaries[i, 1] * sample_rate beg_sample = int(max(0, beg_sample - before_margin * sample_rate)) end_sample = int( min(sig_len, end_sample + after_margin * sample_rate) ) len_seg = end_sample - beg_sample vad_segment, fs = torchaudio.load( audio_file, frame_offset=beg_sample, num_frames=len_seg ) segments.append(vad_segment) return segments
[docs] def get_speech_segments( self, audio_file, large_chunk_size=30, small_chunk_size=10, overlap_small_chunk=False, apply_energy_VAD=False, double_check=True, close_th=0.250, len_th=0.250, activation_th=0.5, deactivation_th=0.25, en_activation_th=0.5, en_deactivation_th=0.0, speech_th=0.50, ): """Detects speech segments within the input file. The input signal can be both a short or a long recording. The function computes the posterior probabilities on large chunks (e.g, 30 sec), that are read sequentially (to avoid storing big signals in memory). Each large chunk is, in turn, split into smaller chunks (e.g, 10 seconds) that are processed in parallel. The pipeline for detecting the speech segments is the following: 1- Compute posteriors probabilities at the frame level. 2- Apply a threshold on the posterior probability. 3- Derive candidate speech segments on top of that. 4- Apply energy VAD within each candidate segment (optional). 5- Merge segments that are too close. 6- Remove segments that are too short. 7- Double check speech segments (optional). Arguments --------- audio_file : str Path to audio file. large_chunk_size: float Size (in seconds) of the large chunks that are read sequentially from the input audio file. small_chunk_size: float Size (in seconds) of the small chunks extracted from the large ones. The audio signal is processed in parallel within the small chunks. Note that large_chunk_size/small_chunk_size must be an integer. overlap_small_chunk: bool If True, it creates overlapped small chunks (with 50% overlap). The probabilities of the overlapped chunks are combined using hamming windows. apply_energy_VAD: bool If True, a energy-based VAD is used on the detected speech segments. The neural network VAD often creates longer segments and tends to merge close segments together. The energy VAD post-processes can be useful for having a fine-grained voice activity detection. The energy thresholds is managed by activation_th and deactivation_th (see below). double_check: bool If True, double checks (using the neural VAD) that the candidate speech segments actually contain speech. A threshold on the mean posterior probabilities provided by the neural network is applied based on the speech_th parameter (see below). activation_th: float Threshold of the neural posteriors above which starting a speech segment. deactivation_th: float Threshold of the neural posteriors below which ending a speech segment. en_activation_th: float A new speech segment is started it the energy is above activation_th. This is active only if apply_energy_VAD is True. en_deactivation_th: float The segment is considered ended when the energy is <= deactivation_th. This is active only if apply_energy_VAD is True. speech_th: float Threshold on the mean posterior probability within the candidate speech segment. Below that threshold, the segment is re-assigned to a non-speech region. This is active only if double_check is True. close_th: float If the distance between boundaries is smaller than close_th, the segments will be merged. len_th: float If the length of the segment is smaller than close_th, the segments will be merged. Returns ------- boundaries: torch.Tensor Tensor containing the start second of speech segments in even positions and their corresponding end in odd positions (e.g, [1.0, 1.5, 5,.0 6.0] means that we have two speech segment; one from 1.0 to 1.5 seconds and another from 5.0 to 6.0 seconds). """ # Fetch audio file from web if not local source, fl = split_path(audio_file) audio_file = fetch(fl, source=source) # Computing speech vs non speech probabilities prob_chunks = self.get_speech_prob_file( audio_file, large_chunk_size=large_chunk_size, small_chunk_size=small_chunk_size, overlap_small_chunk=overlap_small_chunk, ) # Apply a threshold to get candidate speech segments prob_th = self.apply_threshold( prob_chunks, activation_th=activation_th, deactivation_th=deactivation_th, ).float() # Compute the boundaries of the speech segments boundaries = self.get_boundaries(prob_th, output_value="seconds") # Apply energy-based VAD on the detected speech segments if apply_energy_VAD: boundaries = self.energy_VAD( audio_file, boundaries, activation_th=en_activation_th, deactivation_th=en_deactivation_th, ) # Merge short segments boundaries = self.merge_close_segments(boundaries, close_th=close_th) # Remove short segments boundaries = self.remove_short_segments(boundaries, len_th=len_th) # Double check speech segments if double_check: boundaries = self.double_check_speech_segments( boundaries, audio_file, speech_th=speech_th ) return boundaries
[docs] def forward(self, wavs, wav_lens=None): """Gets frame-level speech-activity predictions""" return self.get_speech_prob_chunk(wavs, wav_lens)
[docs]class SepformerSeparation(Pretrained): """A "ready-to-use" speech separation model. Uses Sepformer architecture. Example ------- >>> tmpdir = getfixture("tmpdir") >>> model = SepformerSeparation.from_hparams( ... source="speechbrain/sepformer-wsj02mix", ... savedir=tmpdir) >>> mix = torch.randn(1, 400) >>> est_sources = model.separate_batch(mix) >>> print(est_sources.shape) torch.Size([1, 400, 2]) """ MODULES_NEEDED = ["encoder", "masknet", "decoder"]
[docs] def separate_batch(self, mix): """Run source separation on batch of audio. Arguments --------- mix : torch.Tensor The mixture of sources. Returns ------- tensor Separated sources """ # Separation mix = mix.to(self.device) mix_w = self.mods.encoder(mix) est_mask = self.mods.masknet(mix_w) mix_w = torch.stack([mix_w] * self.hparams.num_spks) sep_h = mix_w * est_mask # Decoding est_source = torch.cat( [ self.mods.decoder(sep_h[i]).unsqueeze(-1) for i in range(self.hparams.num_spks) ], dim=-1, ) # T changed after conv1d in encoder, fix it here T_origin = mix.size(1) T_est = est_source.size(1) if T_origin > T_est: est_source = F.pad(est_source, (0, 0, 0, T_origin - T_est)) else: est_source = est_source[:, :T_origin, :] return est_source
[docs] def separate_file(self, path, savedir="audio_cache"): """Separate sources from file. Arguments --------- path : str Path to file which has a mixture of sources. It can be a local path, a web url, or a huggingface repo. savedir : path Path where to store the wav signals (when downloaded from the web). Returns ------- tensor Separated sources """ source, fl = split_path(path) path = fetch(fl, source=source, savedir=savedir) batch, fs_file = torchaudio.load(path) batch = batch.to(self.device) fs_model = self.hparams.sample_rate # resample the data if needed if fs_file != fs_model: print( "Resampling the audio from {} Hz to {} Hz".format( fs_file, fs_model ) ) tf = torchaudio.transforms.Resample( orig_freq=fs_file, new_freq=fs_model ).to(self.device) batch = batch.mean(dim=0, keepdim=True) batch = tf(batch) est_sources = self.separate_batch(batch) est_sources = ( est_sources / est_sources.abs().max(dim=1, keepdim=True)[0] ) return est_sources
[docs] def forward(self, mix): """Runs separation on the input mix""" return self.separate_batch(mix)
[docs]class SpectralMaskEnhancement(Pretrained): """A ready-to-use model for speech enhancement. Arguments --------- See ``Pretrained``. Example ------- >>> import torch >>> from speechbrain.pretrained import SpectralMaskEnhancement >>> # Model is downloaded from the speechbrain HuggingFace repo >>> tmpdir = getfixture("tmpdir") >>> enhancer = SpectralMaskEnhancement.from_hparams( ... source="speechbrain/metricgan-plus-voicebank", ... savedir=tmpdir, ... ) >>> enhanced = enhancer.enhance_file( ... "speechbrain/metricgan-plus-voicebank/example.wav" ... ) """ HPARAMS_NEEDED = ["compute_stft", "spectral_magnitude", "resynth"] MODULES_NEEDED = ["enhance_model"]
[docs] def compute_features(self, wavs): """Compute the log spectral magnitude features for masking. Arguments --------- wavs : torch.Tensor A batch of waveforms to convert to log spectral mags. """ feats = self.hparams.compute_stft(wavs) feats = self.hparams.spectral_magnitude(feats) return torch.log1p(feats)
[docs] def enhance_batch(self, noisy, lengths=None): """Enhance a batch of noisy waveforms. Arguments --------- noisy : torch.Tensor A batch of waveforms to perform enhancement on. lengths : torch.Tensor The lengths of the waveforms if the enhancement model handles them. Returns ------- torch.Tensor A batch of enhanced waveforms of the same shape as input. """ noisy = noisy.to(self.device) noisy_features = self.compute_features(noisy) # Perform masking-based enhancement, multiplying output with input. if lengths is not None: mask = self.mods.enhance_model(noisy_features, lengths=lengths) else: mask = self.mods.enhance_model(noisy_features) enhanced = torch.mul(mask, noisy_features) # Return resynthesized waveforms return self.hparams.resynth(torch.expm1(enhanced), noisy)
[docs] def enhance_file(self, filename, output_filename=None, **kwargs): """Enhance a wav file. Arguments --------- filename : str Location on disk to load file for enhancement. output_filename : str If provided, writes enhanced data to this file. """ noisy = self.load_audio(filename, **kwargs) noisy = noisy.to(self.device) # Fake a batch: batch = noisy.unsqueeze(0) if lengths_arg_exists(self.enhance_batch): enhanced = self.enhance_batch(batch, lengths=torch.tensor([1.0])) else: enhanced = self.enhance_batch(batch) if output_filename is not None: torchaudio.save(output_filename, enhanced, channels_first=False) return enhanced.squeeze(0)
[docs]class EncodeDecodePipelineMixin: """ A mixin for pretrained models that makes it possible to specify an encoding pipeline and a decoding pipeline """
[docs] def create_pipelines(self): """ Initializes the encode and decode pipeline """ self._run_init_steps(self.hparams.encode_pipeline) self._run_init_steps(self.hparams.decode_pipeline) self.encode_pipeline = DataPipeline( static_data_keys=self.INPUT_STATIC_KEYS, dynamic_items=self.hparams.encode_pipeline["steps"], output_keys=self.hparams.encode_pipeline["output_keys"], ) self.decode_pipeline = DataPipeline( static_data_keys=self.hparams.model_output_keys, dynamic_items=self.hparams.decode_pipeline["steps"], output_keys=self.OUTPUT_KEYS, )
def _run_init_steps(self, pipeline_definition): """Encode/decode pipelines may include initialization steps, such as filling text encoders with tokens. Calling this method will run them, if defined""" steps = pipeline_definition.get("init", []) for step in steps: step_func = step.get("func") if not step_func or not callable(step_func): raise ValueError("Invalid pipeline init definition") step_func() def _run_pipeline(self, pipeline, input, batch): if batch: output = pipeline(input) else: output = [pipeline(item) for item in input] return output def _get_encode_pipeline_input(self, input): return input if self.batch_inputs else self._itemize(input) def _get_decode_pipeline_input(self, model_output): model_output_keys = getattr(self.hparams, "model_output_keys", None) pipeline_input = model_output if len(model_output_keys) == 1: pipeline_input = (pipeline_input,) # The input to a pipeline is a dictionary. If model_output_keys # is provided, the output of the model is assumed to be a collection # (e.g. a list or a tuple). if model_output_keys: pipeline_input = dict(zip(model_output_keys, pipeline_input)) # By default, the pipeline will be applied to in batch mode # to the entire model input if not self.batch_outputs: pipeline_input = self._itemize(pipeline_input) return pipeline_input def _itemize(self, pipeline_input): first_item = next(iter(pipeline_input.values())) keys, values = pipeline_input.keys(), pipeline_input.values() batch_length = len(first_item) return [ dict(zip(keys, [value[idx] for value in values])) for idx in range(batch_length) ]
[docs] def to_dict(self, data): """ Converts padded batches to dictionaries, leaves other data types as is Arguments --------- data: object a dictionary or a padded batch Returns ------- results: dict the dictionary """ if isinstance(data, PaddedBatch): data = { key: self._get_value(data, key) for key in self.hparams.encode_pipeline["output_keys"] } return data
def _get_value(self, data, key): """ Retrieves the value associated with the specified key, dereferencing .data where applicable Arguments --------- data: PaddedBatch a padded batch key: str the key Returns ------- result: object the result """ value = getattr(data, key) if not self.input_use_padded_data and isinstance(value, PaddedData): value = value.data return value @property def batch_inputs(self): """ Determines whether the input pipeline operates on batches or individual examples (true means batched) Returns ------- batch_inputs: bool """ return self.hparams.encode_pipeline.get("batch", True) @property def input_use_padded_data(self): """ If turned on, raw PaddedData instances will be passed to the model. If turned off, only .data will be used Returns ------- result: bool whether padded data is used as is """ return self.hparams.encode_pipeline.get("use_padded_data", False) @property def batch_outputs(self): """ Determines whether the output pipeline operates on batches or individual examples (true means batched) Returns ------- batch_outputs: bool """ return self.hparams.decode_pipeline.get("batch", True) def _collate(self, data): if not self.batch_inputs: collate_fn = getattr(self.hparams, "collate_fn", PaddedBatch) data = collate_fn(data) return data
[docs] def encode_input(self, input): """ Encodes the inputs using the pipeline Arguments --------- input: dict the raw inputs Returns ------- results: object """ pipeline_input = self._get_encode_pipeline_input(input) model_input = self._run_pipeline( pipeline=self.encode_pipeline, input=pipeline_input, batch=self.batch_inputs, ) model_input = self._collate(model_input) if hasattr(model_input, "to"): model_input = model_input.to(self.device) return self.to_dict(model_input)
[docs] def decode_output(self, output): """ Decodes the raw model outputs Arguments --------- output: tuple raw model outputs Returns ------- result: dict or list the output of the pipeline """ pipeline_input = self._get_decode_pipeline_input(output) return self._run_pipeline( pipeline=self.decode_pipeline, input=pipeline_input, batch=self.batch_outputs, )
[docs]class GraphemeToPhoneme(Pretrained, EncodeDecodePipelineMixin): """ A pretrained model implementation for Grapheme-to-Phoneme (G2P) models that take raw natural language text as an input and Example ------- >>> text = ("English is tough. It can be understood " ... "through thorough thought though") >>> from speechbrain.pretrained import GraphemeToPhoneme >>> tmpdir = getfixture('tmpdir') >>> g2p = GraphemeToPhoneme.from_hparams('path/to/model', savedir=tmpdir) # doctest: +SKIP >>> phonemes = g2p.g2p(text) # doctest: +SKIP """ INPUT_STATIC_KEYS = ["txt"] OUTPUT_KEYS = ["phonemes"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.create_pipelines() self.load_dependencies() @property def phonemes(self): """Returns the available phonemes""" return self.hparams.phonemes @property def language(self): """Returns the language for which this model is available""" return self.hparams.language
[docs] def g2p(self, text): """Performs the Grapheme-to-Phoneme conversion Arguments --------- text: str or list[str] a single string to be encoded to phonemes - or a sequence of strings Returns ------- result: list if a single example was provided, the return value is a single list of phonemes """ single = isinstance(text, str) if single: text = [text] model_inputs = self.encode_input({"txt": text}) self._update_graphemes(model_inputs) model_outputs = self.mods.model(**model_inputs) decoded_output = self.decode_output(model_outputs) phonemes = decoded_output["phonemes"] if single: phonemes = phonemes[0] return phonemes
def _update_graphemes(self, model_inputs): grapheme_sequence_mode = getattr(self.hparams, "grapheme_sequence_mode") if grapheme_sequence_mode and grapheme_sequence_mode != "raw": grapheme_encoded_key = f"grapheme_encoded_{grapheme_sequence_mode}" if grapheme_encoded_key in model_inputs: model_inputs["grapheme_encoded"] = model_inputs[ grapheme_encoded_key ]
[docs] def load_dependencies(self): """Loads any relevant model dependencies""" deps_pretrainer = getattr(self.hparams, "deps_pretrainer", None) if deps_pretrainer: deps_pretrainer.collect_files() deps_pretrainer.load_collected(device=self.device)
[docs] def __call__(self, text): """A convenience callable wrapper - same as G2P Arguments --------- text: str or list[str] a single string to be encoded to phonemes - or a sequence of strings Returns ------- result: list if a single example was provided, the return value is a single list of phonemes """ return self.g2p(text)
[docs] def forward(self, noisy, lengths=None): """Runs enhancement on the noisy input""" return self.enhance_batch(noisy, lengths)
[docs]class WaveformEnhancement(Pretrained): """A ready-to-use model for speech enhancement. Arguments --------- See ``Pretrained``. Example ------- >>> from speechbrain.pretrained import WaveformEnhancement >>> # Model is downloaded from the speechbrain HuggingFace repo >>> tmpdir = getfixture("tmpdir") >>> enhancer = WaveformEnhancement.from_hparams( ... source="speechbrain/mtl-mimic-voicebank", ... savedir=tmpdir, ... ) >>> enhanced = enhancer.enhance_file( ... "speechbrain/mtl-mimic-voicebank/example.wav" ... ) """ MODULES_NEEDED = ["enhance_model"]
[docs] def enhance_batch(self, noisy, lengths=None): """Enhance a batch of noisy waveforms. Arguments --------- noisy : torch.Tensor A batch of waveforms to perform enhancement on. lengths : torch.Tensor The lengths of the waveforms if the enhancement model handles them. Returns ------- torch.Tensor A batch of enhanced waveforms of the same shape as input. """ noisy = noisy.to(self.device) enhanced_wav, _ = self.mods.enhance_model(noisy) return enhanced_wav
[docs] def enhance_file(self, filename, output_filename=None, **kwargs): """Enhance a wav file. Arguments --------- filename : str Location on disk to load file for enhancement. output_filename : str If provided, writes enhanced data to this file. """ noisy = self.load_audio(filename, **kwargs) # Fake a batch: batch = noisy.unsqueeze(0) enhanced = self.enhance_batch(batch) if output_filename is not None: torchaudio.save(output_filename, enhanced, channels_first=False) return enhanced.squeeze(0)
[docs] def forward(self, noisy, lengths=None): """Runs enhancement on the noisy input""" return self.enhance_batch(noisy, lengths)
[docs]class SNREstimator(Pretrained): """A "ready-to-use" SNR estimator.""" MODULES_NEEDED = ["encoder", "encoder_out"] HPARAMS_NEEDED = ["stat_pooling", "snrmax", "snrmin"]
[docs] def estimate_batch(self, mix, predictions): """Run SI-SNR estimation on the estimated sources, and mixture. Arguments --------- mix : torch.Tensor The mixture of sources of shape B X T predictions : torch.Tensor of size (B x T x C), where B is batch size T is number of time points C is number of sources Returns ------- tensor Estimate of SNR """ predictions = predictions.permute(0, 2, 1) predictions = predictions.reshape(-1, predictions.size(-1)) if hasattr(self.hparams, "separation_norm_type"): if self.hparams.separation_norm_type == "max": predictions = ( predictions / predictions.max(dim=1, keepdim=True)[0] ) mix = mix / mix.max(dim=1, keepdim=True)[0] elif self.hparams.separation_norm_type == "stnorm": predictions = ( predictions - predictions.mean(dim=1, keepdim=True) ) / predictions.std(dim=1, keepdim=True) mix = (mix - mix.mean(dim=1, keepdim=True)) / mix.std( dim=1, keepdim=True ) min_T = min(predictions.shape[1], mix.shape[1]) assert predictions.shape[1] == mix.shape[1], "lengths change" mix_repeat = mix.repeat(2, 1) inp_cat = torch.cat( [ predictions[:, :min_T].unsqueeze(1), mix_repeat[:, :min_T].unsqueeze(1), ], dim=1, ) enc = self.mods.encoder(inp_cat) enc = enc.permute(0, 2, 1) enc_stats = self.hparams.stat_pooling(enc) # this gets the SI-SNR estimate in the compressed range 0-1 snrhat = self.mods.encoder_out(enc_stats).squeeze() # get the SI-SNR estimate in the true range snrhat = self.gettrue_snrrange(snrhat) return snrhat
[docs] def forward(self, mix, predictions): """Just run the batch estimate""" return self.estimate_batch(mix, predictions)
[docs] def gettrue_snrrange(self, inp): """Convert from 0-1 range to true snr range""" rnge = self.hparams.snrmax - self.hparams.snrmin inp = inp * rnge inp = inp + self.hparams.snrmin return inp
[docs]class Tacotron2(Pretrained): """ A ready-to-use wrapper for Tacotron2 (text -> mel_spec). Arguments --------- hparams Hyperparameters (from HyperPyYAML) Example ------- >>> tmpdir_tts = getfixture('tmpdir') / "tts" >>> tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir=tmpdir_tts) >>> mel_output, mel_length, alignment = tacotron2.encode_text("Mary had a little lamb") >>> items = [ ... "A quick brown fox jumped over the lazy dog", ... "How much wood would a woodchuck chuck?", ... "Never odd or even" ... ] >>> mel_outputs, mel_lengths, alignments = tacotron2.encode_batch(items) >>> # One can combine the TTS model with a vocoder (that generates the final waveform) >>> # Intialize the Vocoder (HiFIGAN) >>> tmpdir_vocoder = getfixture('tmpdir') / "vocoder" >>> hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir=tmpdir_vocoder) >>> # Running the TTS >>> mel_output, mel_length, alignment = tacotron2.encode_text("Mary had a little lamb") >>> # Running Vocoder (spectrogram-to-waveform) >>> waveforms = hifi_gan.decode_batch(mel_output) """ HPARAMS_NEEDED = ["model", "text_to_sequence"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.text_cleaners = getattr( self.hparams, "text_cleaners", ["english_cleaners"] ) self.infer = self.hparams.model.infer
[docs] def text_to_seq(self, txt): """Encodes raw text into a tensor with a customer text-to-equence fuction""" sequence = self.hparams.text_to_sequence(txt, self.text_cleaners) return sequence, len(sequence)
[docs] def encode_batch(self, texts): """Computes mel-spectrogram for a list of texts Texts must be sorted in decreasing order on their lengths Arguments --------- texts: List[str] texts to be encoded into spectrogram Returns ------- tensors of output spectrograms, output lengths and alignments """ with torch.no_grad(): inputs = [ { "text_sequences": torch.tensor( self.text_to_seq(item)[0], device=self.device ) } for item in texts ] inputs = speechbrain.dataio.batch.PaddedBatch(inputs) lens = [self.text_to_seq(item)[1] for item in texts] assert lens == sorted( lens, reverse=True ), "input lengths must be sorted in decreasing order" input_lengths = torch.tensor(lens, device=self.device) mel_outputs_postnet, mel_lengths, alignments = self.infer( inputs.text_sequences.data, input_lengths ) return mel_outputs_postnet, mel_lengths, alignments
[docs] def encode_text(self, text): """Runs inference for a single text str""" return self.encode_batch([text])
[docs] def forward(self, texts): "Encodes the input texts." return self.encode_batch(texts)
[docs]class FastSpeech2(Pretrained): """ A ready-to-use wrapper for Fastspeech2 (text -> mel_spec). Arguments --------- hparams Hyperparameters (from HyperPyYAML) Example ------- >>> tmpdir_tts = getfixture('tmpdir') / "tts" >>> fastspeech2 = FastSpeech2.from_hparams(source="speechbrain/tts-fastspeech2-ljspeech", savedir=tmpdir_tts) >>> mel_outputs, durations, pitch, energy = fastspeech2.encode_text(["Mary had a little lamb"]) >>> items = [ ... "A quick brown fox jumped over the lazy dog", ... "How much wood would a woodchuck chuck?", ... "Never odd or even" ... ] >>> mel_outputs, durations, pitch, energy = fastspeech2.encode_text(items) >>> >>> # One can combine the TTS model with a vocoder (that generates the final waveform) >>> # Intialize the Vocoder (HiFIGAN) >>> tmpdir_vocoder = getfixture('tmpdir') / "vocoder" >>> hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir=tmpdir_vocoder) >>> # Running the TTS >>> mel_outputs, durations, pitch, energy = fastspeech2.encode_text(["Mary had a little lamb"]) >>> # Running Vocoder (spectrogram-to-waveform) >>> waveforms = hifi_gan.decode_batch(mel_outputs) """ HPARAMS_NEEDED = ["spn_predictor", "model", "input_encoder"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) lexicon = self.hparams.lexicon lexicon = ["@@"] + lexicon self.input_encoder = self.hparams.input_encoder self.input_encoder.update_from_iterable(lexicon, sequence_input=False) self.input_encoder.add_unk() self.g2p = GraphemeToPhoneme.from_hparams("speechbrain/soundchoice-g2p") self.spn_token_encoded = ( self.input_encoder.encode_sequence_torch(["spn"]).int().item() )
[docs] def encode_text(self, texts, pace=1.0, pitch_rate=1.0, energy_rate=1.0): """Computes mel-spectrogram for a list of texts Arguments --------- texts: List[str] texts to be converted to spectrogram pace: float pace for the speech synthesis pitch_rate : float scaling factor for phoneme pitches energy_rate : float scaling factor for phoneme energies Returns ------- tensors of output spectrograms, output lengths and alignments """ # Preprocessing required at the inference time for the input text # "label" below contains input text # "phoneme_labels" contain the phoneme sequences corresponding to input text labels # "last_phonemes_combined" is used to indicate whether the index position is for a last phoneme of a word # "punc_positions" is used to add back the silence for punctuations phoneme_labels = list() last_phonemes_combined = list() punc_positions = list() for label in texts: phoneme_label = list() last_phonemes = list() punc_position = list() words = label.split() words = [word.strip() for word in words] words_phonemes = self.g2p(words) for i in range(len(words_phonemes)): words_phonemes_seq = words_phonemes[i] for phoneme in words_phonemes_seq: if not phoneme.isspace(): phoneme_label.append(phoneme) last_phonemes.append(0) punc_position.append(0) last_phonemes[-1] = 1 if words[i][-1] in ":;-,.!?": punc_position[-1] = 1 phoneme_labels.append(phoneme_label) last_phonemes_combined.append(last_phonemes) punc_positions.append(punc_position) # Inserts silent phonemes in the input phoneme sequence all_tokens_with_spn = list() max_seq_len = -1 for i in range(len(phoneme_labels)): phoneme_label = phoneme_labels[i] token_seq = ( self.input_encoder.encode_sequence_torch(phoneme_label) .int() .to(self.device) ) last_phonemes = torch.LongTensor(last_phonemes_combined[i]).to( self.device ) # Runs the silent phoneme predictor spn_preds = ( self.hparams.modules["spn_predictor"] .infer(token_seq.unsqueeze(0), last_phonemes.unsqueeze(0)) .int() ) spn_to_add = torch.nonzero(spn_preds).reshape(-1).tolist() for j in range(len(punc_positions[i])): if punc_positions[i][j] == 1: spn_to_add.append(j) tokens_with_spn = list() for token_idx in range(token_seq.shape[0]): tokens_with_spn.append(token_seq[token_idx].item()) if token_idx in spn_to_add: tokens_with_spn.append(self.spn_token_encoded) tokens_with_spn = torch.LongTensor(tokens_with_spn).to(self.device) all_tokens_with_spn.append(tokens_with_spn) if max_seq_len < tokens_with_spn.shape[-1]: max_seq_len = tokens_with_spn.shape[-1] # "tokens_with_spn_tensor" holds the input phoneme sequence with silent phonemes tokens_with_spn_tensor_padded = torch.LongTensor( len(texts), max_seq_len ).to(self.device) tokens_with_spn_tensor_padded.zero_() for seq_idx, seq in enumerate(all_tokens_with_spn): tokens_with_spn_tensor_padded[seq_idx, : len(seq)] = seq return self.encode_batch( tokens_with_spn_tensor_padded, pace=pace, pitch_rate=pitch_rate, energy_rate=energy_rate, )
[docs] def encode_phoneme( self, phonemes, pace=1.0, pitch_rate=1.0, energy_rate=1.0 ): """Computes mel-spectrogram for a list of phoneme sequences Arguments --------- phonemes: List[List[str]] phonemes to be converted to spectrogram pace: float pace for the speech synthesis pitch_rate : float scaling factor for phoneme pitches energy_rate : float scaling factor for phoneme energies Returns ------- tensors of output spectrograms, output lengths and alignments """ all_tokens = [] max_seq_len = -1 for phoneme in phonemes: token_seq = ( self.input_encoder.encode_sequence_torch(phoneme) .int() .to(self.device) ) if max_seq_len < token_seq.shape[-1]: max_seq_len = token_seq.shape[-1] all_tokens.append(token_seq) tokens_padded = torch.LongTensor(len(phonemes), max_seq_len).to( self.device ) tokens_padded.zero_() for seq_idx, seq in enumerate(all_tokens): tokens_padded[seq_idx, : len(seq)] = seq return self.encode_batch( tokens_padded, pace=pace, pitch_rate=pitch_rate, energy_rate=energy_rate, )
[docs] def encode_batch( self, tokens_padded, pace=1.0, pitch_rate=1.0, energy_rate=1.0 ): """Batch inference for a tensor of phoneme sequences Arguments --------- tokens_padded : torch.Tensor A sequence of encoded phonemes to be converted to spectrogram pace : float pace for the speech synthesis pitch_rate : float scaling factor for phoneme pitches energy_rate : float scaling factor for phoneme energies """ with torch.no_grad(): ( _, post_mel_outputs, durations, pitch, _, energy, _, _, ) = self.hparams.model( tokens_padded, pace=pace, pitch_rate=pitch_rate, energy_rate=energy_rate, ) # Transposes to make in compliant with HiFI GAN expected format post_mel_outputs = post_mel_outputs.transpose(-1, 1) return post_mel_outputs, durations, pitch, energy
[docs] def forward(self, text, pace=1.0, pitch_rate=1.0, energy_rate=1.0): """Batch inference for a tensor of phoneme sequences Arguments --------- text : str A text to be converted to spectrogram pace : float pace for the speech synthesis pitch_rate : float scaling factor for phoneme pitches energy_rate : float scaling factor for phoneme energies """ return self.encode_text( [text], pace=pace, pitch_rate=pitch_rate, energy_rate=energy_rate )
[docs]class HIFIGAN(Pretrained): """ A ready-to-use wrapper for HiFiGAN (mel_spec -> waveform). Arguments --------- hparams Hyperparameters (from HyperPyYAML) Example ------- >>> tmpdir_vocoder = getfixture('tmpdir') / "vocoder" >>> hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir=tmpdir_vocoder) >>> mel_specs = torch.rand(2, 80,298) >>> waveforms = hifi_gan.decode_batch(mel_specs) >>> # You can use the vocoder coupled with a TTS system >>> # Initialize TTS (tacotron2) >>> tmpdir_tts = getfixture('tmpdir') / "tts" >>> tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir=tmpdir_tts) >>> # Running the TTS >>> mel_output, mel_length, alignment = tacotron2.encode_text("Mary had a little lamb") >>> # Running Vocoder (spectrogram-to-waveform) >>> waveforms = hifi_gan.decode_batch(mel_output) """ HPARAMS_NEEDED = ["generator"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.infer = self.hparams.generator.inference self.first_call = True
[docs] def decode_batch(self, spectrogram, mel_lens=None, hop_len=None): """Computes waveforms from a batch of mel-spectrograms Arguments --------- spectrogram: torch.Tensor Batch of mel-spectrograms [batch, mels, time] mel_lens: torch.tensor A list of lengths of mel-spectrograms for the batch Can be obtained from the output of Tacotron/FastSpeech hop_len: int hop length used for mel-spectrogram extraction should be the same value as in the .yaml file Returns ------- waveforms: torch.Tensor Batch of mel-waveforms [batch, 1, time] """ # Prepare for inference by removing the weight norm if self.first_call: self.hparams.generator.remove_weight_norm() self.first_call = False with torch.no_grad(): waveform = self.infer(spectrogram.to(self.device)) # Mask the noise caused by padding during batch inference if mel_lens is not None and hop_len is not None: waveform = self.mask_noise(waveform, mel_lens, hop_len) return waveform
[docs] def mask_noise(self, waveform, mel_lens, hop_len): """Mask the noise caused by padding during batch inference Arguments --------- wavform: torch.tensor Batch of generated waveforms [batch, 1, time] mel_lens: torch.tensor A list of lengths of mel-spectrograms for the batch Can be obtained from the output of Tacotron/FastSpeech hop_len: int hop length used for mel-spectrogram extraction same value as in the .yaml file Returns ------- waveform: torch.tensor Batch of waveforms without padded noise [batch, 1, time] """ waveform = waveform.squeeze(1) # the correct audio length should be hop_len * mel_len mask = length_to_mask( mel_lens * hop_len, waveform.shape[1], device=waveform.device ).bool() waveform.masked_fill_(~mask, 0.0) return waveform.unsqueeze(1)
[docs] def decode_spectrogram(self, spectrogram): """Computes waveforms from a single mel-spectrogram Arguments --------- spectrogram: torch.Tensor mel-spectrogram [mels, time] Returns ------- waveform: torch.Tensor waveform [1, time] audio can be saved by: >>> waveform = torch.rand(1, 666666) >>> sample_rate = 22050 >>> torchaudio.save(str(getfixture('tmpdir') / "test.wav"), waveform, sample_rate) """ if self.first_call: self.hparams.generator.remove_weight_norm() self.first_call = False with torch.no_grad(): waveform = self.infer(spectrogram.unsqueeze(0).to(self.device)) return waveform.squeeze(0)
[docs] def forward(self, spectrogram): "Decodes the input spectrograms" return self.decode_batch(spectrogram)
[docs]class WhisperASR(Pretrained): """A ready-to-use Whisper ASR model The class can be used to run the entire encoder-decoder whisper model (transcribe()) to transcribe speech. The given YAML must contains the fields specified in the *_NEEDED[] lists. Example ------- >>> from speechbrain.pretrained import WhisperASR >>> tmpdir = getfixture("tmpdir") >>> asr_model = WhisperASR.from_hparams(source="speechbrain/asr-whisper-large-v2-commonvoice-fr", savedir=tmpdir,) # doctest: +SKIP >>> asr_model.transcribe_file("speechbrain/asr-whisper-large-v2-commonvoice-fr/example-fr.mp3") # doctest: +SKIP """ HPARAMS_NEEDED = ["language"] MODULES_NEEDED = ["whisper", "decoder"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.tokenizer = self.hparams.whisper.tokenizer self.tokenizer.set_prefix_tokens( self.hparams.language, "transcribe", False ) self.hparams.decoder.set_decoder_input_tokens( self.tokenizer.prefix_tokens )
[docs] def transcribe_file(self, path): """Transcribes the given audiofile into a sequence of words. Arguments --------- path : str Path to audio file which to transcribe. Returns ------- str The audiofile transcription produced by this ASR system. """ waveform = self.load_audio(path) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) predicted_words, predicted_tokens = self.transcribe_batch( batch, rel_length ) return predicted_words
[docs] def encode_batch(self, wavs, wav_lens): """Encodes the input audio into a sequence of hidden states The waveforms should already be in the model's desired format. You can call: ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.tensor Batch of waveforms [batch, time, channels]. wav_lens : torch.tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- torch.tensor The encoded batch """ wavs = wavs.float() wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) encoder_out = self.mods.whisper.forward_encoder(wavs) return encoder_out
[docs] def transcribe_batch(self, wavs, wav_lens): """Transcribes the input audio into a sequence of words The waveforms should already be in the model's desired format. You can call: ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.tensor Batch of waveforms [batch, time, channels]. wav_lens : torch.tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- list Each waveform in the batch transcribed. tensor Each predicted token id. """ with torch.no_grad(): wav_lens = wav_lens.to(self.device) encoder_out = self.encode_batch(wavs, wav_lens) predicted_tokens, scores = self.mods.decoder(encoder_out, wav_lens) predicted_words = self.tokenizer.batch_decode( predicted_tokens, skip_special_tokens=True ) if self.hparams.normalized_transcripts: predicted_words = [ self.tokenizer._normalize(text).split(" ") for text in predicted_words ] return predicted_words, predicted_tokens
[docs] def forward(self, wavs, wav_lens): """Runs full transcription - note: no gradients through decoding""" return self.transcribe_batch(wavs, wav_lens)
[docs]class Speech_Emotion_Diarization(Pretrained): """A ready-to-use SED interface (audio -> emotions and their durations) Arguments --------- hparams Hyperparameters (from HyperPyYAML) Example ------- >>> from speechbrain.pretrained import Speech_Emotion_Diarization >>> tmpdir = getfixture("tmpdir") >>> sed_model = Speech_Emotion_Diarization.from_hparams(source="speechbrain/emotion-diarization-wavlm-large", savedir=tmpdir,) # doctest: +SKIP >>> sed_model.diarize_file("speechbrain/emotion-diarization-wavlm-large/example.wav") # doctest: +SKIP """ MODULES_NEEDED = ["input_norm", "wav2vec", "output_mlp"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
[docs] def diarize_file(self, path): """Get emotion diarization of a spoken utterance. Arguments --------- path : str Path to audio file which to diarize. Returns ------- dict The emotions and their boundaries. """ waveform = self.load_audio(path) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]) frame_class = self.diarize_batch(batch, rel_length, [path]) return frame_class
[docs] def encode_batch(self, wavs, wav_lens): """Encodes audios into fine-grained emotional embeddings Arguments --------- wavs : torch.tensor Batch of waveforms [batch, time, channels]. wav_lens : torch.tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- torch.tensor The encoded batch """ if len(wavs.shape) == 1: wavs = wavs.unsqueeze(0) # Assign full length if wav_lens is not assigned if wav_lens is None: wav_lens = torch.ones(wavs.shape[0], device=self.device) wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) wavs = self.mods.input_norm(wavs, wav_lens) outputs = self.mods.wav2vec2(wavs) return outputs
[docs] def diarize_batch(self, wavs, wav_lens, batch_id): """Get emotion diarization of a batch of waveforms. The waveforms should already be in the model's desired format. You can call: ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)`` to get a correctly converted signal in most cases. Arguments --------- wavs : torch.tensor Batch of waveforms [batch, time, channels]. wav_lens : torch.tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. batch_id : torch.tensor id of each batch (file names etc.) Returns ------- torch.tensor The frame-wise predictions """ outputs = self.encode_batch(wavs, wav_lens) averaged_out = self.hparams.avg_pool(outputs) outputs = self.mods.output_mlp(averaged_out) outputs = self.hparams.log_softmax(outputs) score, index = torch.max(outputs, dim=-1) preds = self.hparams.label_encoder.decode_torch(index) results = self.preds_to_diarization(preds, batch_id) return results
[docs] def preds_to_diarization(self, prediction, batch_id): """Convert frame-wise predictions into a dictionary of diarization results. Returns ------- dictionary A dictionary with the start/end of each emotion """ results = {} for i in range(len(prediction)): pred = prediction[i] lol = [] for j in range(len(pred)): start = round(self.hparams.stride * 0.02 * j, 2) end = round(start + self.hparams.window_length * 0.02, 2) lol.append([batch_id[i], start, end, pred[j]]) lol = self.merge_ssegs_same_emotion_adjacent(lol) results[batch_id[i]] = [ {"start": k[1], "end": k[2], "emotion": k[3]} for k in lol ] return results
[docs] def forward(self, wavs, wav_lens): """Runs full transcription - note: no gradients through decoding""" return self.transcribe_batch(wavs, wav_lens)
[docs] def is_overlapped(self, end1, start2): """Returns True if segments are overlapping. Arguments --------- end1 : float End time of the first segment. start2 : float Start time of the second segment. Returns ------- overlapped : bool True of segments overlapped else False. Example ------- >>> from speechbrain.processing import diarization as diar >>> diar.is_overlapped(5.5, 3.4) True >>> diar.is_overlapped(5.5, 6.4) False """ if start2 > end1: return False else: return True
[docs] def merge_ssegs_same_emotion_adjacent(self, lol): """Merge adjacent sub-segs if they are the same emotion. Arguments --------- lol : list of list Each list contains [utt_id, sseg_start, sseg_end, emo_label]. Returns ------- new_lol : list of list new_lol contains adjacent segments merged from the same emotion ID. Example ------- >>> from speechbrain.utils.EDER import merge_ssegs_same_emotion_adjacent >>> lol=[['u1', 0.0, 7.0, 'a'], ... ['u1', 7.0, 9.0, 'a'], ... ['u1', 9.0, 11.0, 'n'], ... ['u1', 11.0, 13.0, 'n'], ... ['u1', 13.0, 15.0, 'n'], ... ['u1', 15.0, 16.0, 'a']] >>> merge_ssegs_same_emotion_adjacent(lol) [['u1', 0.0, 9.0, 'a'], ['u1', 9.0, 15.0, 'n'], ['u1', 15.0, 16.0, 'a']] """ new_lol = [] # Start from the first sub-seg sseg = lol[0] flag = False for i in range(1, len(lol)): next_sseg = lol[i] # IF sub-segments overlap AND has same emotion THEN merge if ( self.is_overlapped(sseg[2], next_sseg[1]) and sseg[3] == next_sseg[3] ): sseg[2] = next_sseg[2] # just update the end time # This is important. For the last sseg, if it is the same emotion then merge # Make sure we don't append the last segment once more. Hence, set FLAG=True if i == len(lol) - 1: flag = True new_lol.append(sseg) else: new_lol.append(sseg) sseg = next_sseg # Add last segment only when it was skipped earlier. if flag is False: new_lol.append(lol[-1]) return new_lol
[docs]class AudioClassifier(Pretrained): """A ready-to-use class for utterance-level classification (e.g, speaker-id, language-id, emotion recognition, keyword spotting, etc). The class assumes that an encoder called "embedding_model" and a model called "classifier" are defined in the yaml file. If you want to convert the predicted index into a corresponding text label, please provide the path of the label_encoder in a variable called 'lab_encoder_file' within the yaml. The class can be used either to run only the encoder (encode_batch()) to extract embeddings or to run a classification step (classify_batch()). ``` Example ------- >>> import torchaudio >>> from speechbrain.pretrained import AudioClassifier >>> tmpdir = getfixture("tmpdir") >>> classifier = AudioClassifier.from_hparams( ... source="speechbrain/cnn14-esc50", ... savedir=tmpdir, ... ) >>> signal = torch.randn(1, 16000) >>> prediction, _, _, text_lab = classifier.classify_batch(signal) >>> print(prediction.shape) torch.Size([1, 1, 50]) """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
[docs] def classify_batch(self, wavs, wav_lens=None): """Performs classification on the top of the encoded features. It returns the posterior probabilities, the index and, if the label encoder is specified it also the text label. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. Make sure the sample rate is fs=16000 Hz. wav_lens : torch.Tensor Lengths of the waveforms relative to the longest one in the batch, tensor of shape [batch]. The longest one should have relative length 1.0 and others len(waveform) / max_length. Used for ignoring padding. Returns ------- out_prob The log posterior probabilities of each class ([batch, N_class]) score: It is the value of the log-posterior for the best class ([batch,]) index The indexes of the best class ([batch,]) text_lab: List with the text labels corresponding to the indexes. (label encoder should be provided). """ wavs = wavs.to(self.device) X_stft = self.mods.compute_stft(wavs) X_stft_power = speechbrain.processing.features.spectral_magnitude( X_stft, power=self.hparams.spec_mag_power ) if self.hparams.use_melspectra: net_input = self.mods.compute_fbank(X_stft_power) else: net_input = torch.log1p(X_stft_power) # Embeddings + sound classifier embeddings = self.mods.embedding_model(net_input) if embeddings.ndim == 4: embeddings = embeddings.mean((-1, -2)) out_probs = self.mods.classifier(embeddings) score, index = torch.max(out_probs, dim=-1) text_lab = self.hparams.label_encoder.decode_torch(index) return out_probs, score, index, text_lab
[docs] def classify_file(self, path, savedir="audio_cache"): """Classifies the given audiofile into the given set of labels. Arguments --------- path : str Path to audio file to classify. Returns ------- out_prob The log posterior probabilities of each class ([batch, N_class]) score: It is the value of the log-posterior for the best class ([batch,]) index The indexes of the best class ([batch,]) text_lab: List with the text labels corresponding to the indexes. (label encoder should be provided). """ source, fl = split_path(path) path = fetch(fl, source=source, savedir=savedir) batch, fs_file = torchaudio.load(path) batch = batch.to(self.device) fs_model = self.hparams.sample_rate # resample the data if needed if fs_file != fs_model: print( "Resampling the audio from {} Hz to {} Hz".format( fs_file, fs_model ) ) tf = torchaudio.transforms.Resample( orig_freq=fs_file, new_freq=fs_model ).to(self.device) batch = batch.mean(dim=0, keepdim=True) batch = tf(batch) out_probs, score, index, text_lab = self.classify_batch(batch) return out_probs, score, index, text_lab
[docs] def forward(self, wavs, wav_lens=None): """Runs the classification""" return self.classify_batch(wavs, wav_lens)
[docs]class PIQAudioInterpreter(Pretrained): """ This class implements the interface for the PIQ posthoc interpreter for an audio classifier. Example ------- >>> from speechbrain.pretrained import PIQAudioInterpreter >>> tmpdir = getfixture("tmpdir") >>> interpreter = PIQAudioInterpreter.from_hparams( ... source="speechbrain/PIQ-ESC50", ... savedir=tmpdir, ... ) >>> signal = torch.randn(1, 16000) >>> interpretation, _ = interpreter.interpret_batch(signal) """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
[docs] def preprocess(self, wavs): """Pre-process wavs to calculate STFTs""" X_stft = self.mods.compute_stft(wavs) X_stft_power = speechbrain.processing.features.spectral_magnitude( X_stft, power=self.hparams.spec_mag_power ) X_stft_logpower = torch.log1p(X_stft_power) return X_stft_logpower, X_stft, X_stft_power
[docs] def classifier_forward(self, X_stft_logpower): """the forward pass for the classifier""" hcat = self.mods.embedding_model(X_stft_logpower) embeddings = hcat.mean((-1, -2)) predictions = self.mods.classifier(embeddings).squeeze(1) class_pred = predictions.argmax(1) return hcat, embeddings, predictions, class_pred
[docs] def invert_stft_with_phase(self, X_int, X_stft_phase): """Inverts STFT spectra given phase.""" X_stft_phase_sb = torch.cat( ( torch.cos(X_stft_phase).unsqueeze(-1), torch.sin(X_stft_phase).unsqueeze(-1), ), dim=-1, ) X_stft_phase_sb = X_stft_phase_sb[:, : X_int.shape[1], :, :] if X_int.ndim == 3: X_int = X_int.unsqueeze(-1) X_wpsb = X_int * X_stft_phase_sb x_int_sb = self.mods.compute_istft(X_wpsb) return x_int_sb
[docs] def interpret_batch(self, wavs): """Classifies the given audio into the given set of labels. It also provides the interpretation in the audio domain. Arguments --------- wavs : torch.Tensor Batch of waveforms [batch, time, channels] or [batch, time] depending on the model. Make sure the sample rate is fs=16000 Hz. Returns ------- x_int_sound_domain The interpretation in the waveform domain text_lab: The text label for the classification fs_model: The sampling frequency of the model. Useful to save the audio. """ wavs = wavs.to(self.device) X_stft_logpower, X_stft, X_stft_power = self.preprocess(wavs) X_stft_phase = spectral_phase(X_stft) # Embeddings + sound classifier hcat, embeddings, predictions, class_pred = self.classifier_forward( X_stft_logpower ) if self.hparams.use_vq: xhat, hcat, z_q_x = self.mods.psi(hcat, class_pred) else: xhat = self.mods.psi.decoder(hcat) xhat = xhat.squeeze(1) Tmax = xhat.shape[1] if self.hparams.use_mask_output: xhat = F.sigmoid(xhat) X_int = xhat * X_stft_logpower[:, :Tmax, :] else: xhat = F.softplus(xhat) th = xhat.max() * self.hparams.mask_th X_int = (xhat > th) * X_stft_logpower[:, :Tmax, :] X_int = torch.expm1(X_int) x_int_sound_domain = self.invert_stft_with_phase(X_int, X_stft_phase) text_lab = self.hparams.label_encoder.decode_torch( class_pred.unsqueeze(0) ) return x_int_sound_domain, text_lab
[docs] def interpret_file(self, path, savedir="audio_cache"): """Classifies the given audiofile into the given set of labels. It also provides the interpretation in the audio domain. Arguments --------- path : str Path to audio file to classify. Returns ------- x_int_sound_domain The interpretation in the waveform domain text_lab: The text label for the classification fs_model: The sampling frequency of the model. Useful to save the audio. """ source, fl = split_path(path) path = fetch(fl, source=source, savedir=savedir) batch, fs_file = torchaudio.load(path) batch = batch.to(self.device) fs_model = self.hparams.sample_rate # resample the data if needed if fs_file != fs_model: print( "Resampling the audio from {} Hz to {} Hz".format( fs_file, fs_model ) ) tf = torchaudio.transforms.Resample( orig_freq=fs_file, new_freq=fs_model ).to(self.device) batch = batch.mean(dim=0, keepdim=True) batch = tf(batch) x_int_sound_domain, text_lab = self.interpret_batch(batch) return x_int_sound_domain, text_lab, fs_model
[docs] def forward(self, wavs, wav_lens=None): """Runs the classification""" return self.interpret_batch(wavs, wav_lens)