Source code for speechbrain.lobes.features

"""Basic feature pipelines.

Authors
 * Mirco Ravanelli 2020
 * Peter Plantinga 2020
 * Sarthak Yadav 2020
"""
import torch
from speechbrain.processing.features import (
    STFT,
    spectral_magnitude,
    Filterbank,
    DCT,
    Deltas,
    ContextWindow,
)
from speechbrain.nnet.CNN import GaborConv1d
from speechbrain.nnet.normalization import PCEN
from speechbrain.nnet.pooling import GaussianLowpassPooling


[docs]class Fbank(torch.nn.Module): """Generate features for input to the speech pipeline. Arguments --------- deltas : bool (default: False) Whether or not to append derivatives and second derivatives to the features. context : bool (default: False) Whether or not to append forward and backward contexts to the features. requires_grad : bool (default: False) Whether to allow parameters (i.e. fbank centers and spreads) to update during training. sample_rate : int (default: 160000) Sampling rate for the input waveforms. f_min : int (default: 0) Lowest frequency for the Mel filters. f_max : int (default: None) Highest frequency for the Mel filters. Note that if f_max is not specified it will be set to sample_rate // 2. win_length : float (default: 25) Length (in ms) of the sliding window used to compute the STFT. hop_length : float (default: 10) Length (in ms) of the hop of the sliding window used to compute the STFT. n_fft : int (default: 400) Number of samples to use in each stft. n_mels : int (default: 40) Number of Mel filters. filter_shape : str (default: triangular) Shape of the filters ('triangular', 'rectangular', 'gaussian'). param_change_factor : float (default: 1.0) If freeze=False, this parameter affects the speed at which the filter parameters (i.e., central_freqs and bands) can be changed. When high (e.g., param_change_factor=1) the filters change a lot during training. When low (e.g. param_change_factor=0.1) the filter parameters are more stable during training. param_rand_factor : float (default: 0.0) This parameter can be used to randomly change the filter parameters (i.e, central frequencies and bands) during training. It is thus a sort of regularization. param_rand_factor=0 does not affect, while param_rand_factor=0.15 allows random variations within +-15% of the standard values of the filter parameters (e.g., if the central freq is 100 Hz, we can randomly change it from 85 Hz to 115 Hz). left_frames : int (default: 5) Number of frames of left context to add. right_frames : int (default: 5) Number of frames of right context to add. Example ------- >>> import torch >>> inputs = torch.randn([10, 16000]) >>> feature_maker = Fbank() >>> feats = feature_maker(inputs) >>> feats.shape torch.Size([10, 101, 40]) """ def __init__( self, deltas=False, context=False, requires_grad=False, sample_rate=16000, f_min=0, f_max=None, n_fft=400, n_mels=40, filter_shape="triangular", param_change_factor=1.0, param_rand_factor=0.0, left_frames=5, right_frames=5, win_length=25, hop_length=10, ): super().__init__() self.deltas = deltas self.context = context self.requires_grad = requires_grad if f_max is None: f_max = sample_rate / 2 self.compute_STFT = STFT( sample_rate=sample_rate, n_fft=n_fft, win_length=win_length, hop_length=hop_length, ) self.compute_fbanks = Filterbank( sample_rate=sample_rate, n_fft=n_fft, n_mels=n_mels, f_min=f_min, f_max=f_max, freeze=not requires_grad, filter_shape=filter_shape, param_change_factor=param_change_factor, param_rand_factor=param_rand_factor, ) self.compute_deltas = Deltas(input_size=n_mels) self.context_window = ContextWindow( left_frames=left_frames, right_frames=right_frames, )
[docs] def forward(self, wav): """Returns a set of features generated from the input waveforms. Arguments --------- wav : tensor A batch of audio signals to transform to features. """ STFT = self.compute_STFT(wav) mag = spectral_magnitude(STFT) fbanks = self.compute_fbanks(mag) if self.deltas: delta1 = self.compute_deltas(fbanks) delta2 = self.compute_deltas(delta1) fbanks = torch.cat([fbanks, delta1, delta2], dim=2) if self.context: fbanks = self.context_window(fbanks) return fbanks
[docs]class MFCC(torch.nn.Module): """Generate features for input to the speech pipeline. Arguments --------- deltas : bool (default: True) Whether or not to append derivatives and second derivatives to the features. context : bool (default: True) Whether or not to append forward and backward contexts to the features. requires_grad : bool (default: False) Whether to allow parameters (i.e. fbank centers and spreads) to update during training. sample_rate : int (default: 16000) Sampling rate for the input waveforms. f_min : int (default: 0) Lowest frequency for the Mel filters. f_max : int (default: None) Highest frequency for the Mel filters. Note that if f_max is not specified it will be set to sample_rate // 2. win_length : float (default: 25) Length (in ms) of the sliding window used to compute the STFT. hop_length : float (default: 10) Length (in ms) of the hop of the sliding window used to compute the STFT. n_fft : int (default: 400) Number of samples to use in each stft. n_mels : int (default: 23) Number of filters to use for creating filterbank. n_mfcc : int (default: 20) Number of output coefficients filter_shape : str (default 'triangular') Shape of the filters ('triangular', 'rectangular', 'gaussian'). param_change_factor: bool (default 1.0) If freeze=False, this parameter affects the speed at which the filter parameters (i.e., central_freqs and bands) can be changed. When high (e.g., param_change_factor=1) the filters change a lot during training. When low (e.g. param_change_factor=0.1) the filter parameters are more stable during training. param_rand_factor: float (default 0.0) This parameter can be used to randomly change the filter parameters (i.e, central frequencies and bands) during training. It is thus a sort of regularization. param_rand_factor=0 does not affect, while param_rand_factor=0.15 allows random variations within +-15% of the standard values of the filter parameters (e.g., if the central freq is 100 Hz, we can randomly change it from 85 Hz to 115 Hz). left_frames : int (default 5) Number of frames of left context to add. right_frames : int (default 5) Number of frames of right context to add. Example ------- >>> import torch >>> inputs = torch.randn([10, 16000]) >>> feature_maker = MFCC() >>> feats = feature_maker(inputs) >>> feats.shape torch.Size([10, 101, 660]) """ def __init__( self, deltas=True, context=True, requires_grad=False, sample_rate=16000, f_min=0, f_max=None, n_fft=400, n_mels=23, n_mfcc=20, filter_shape="triangular", param_change_factor=1.0, param_rand_factor=0.0, left_frames=5, right_frames=5, win_length=25, hop_length=10, ): super().__init__() self.deltas = deltas self.context = context self.requires_grad = requires_grad if f_max is None: f_max = sample_rate / 2 self.compute_STFT = STFT( sample_rate=sample_rate, n_fft=n_fft, win_length=win_length, hop_length=hop_length, ) self.compute_fbanks = Filterbank( sample_rate=sample_rate, n_fft=n_fft, n_mels=n_mels, f_min=f_min, f_max=f_max, freeze=not requires_grad, filter_shape=filter_shape, param_change_factor=param_change_factor, param_rand_factor=param_rand_factor, ) self.compute_dct = DCT(input_size=n_mels, n_out=n_mfcc) self.compute_deltas = Deltas(input_size=n_mfcc) self.context_window = ContextWindow( left_frames=left_frames, right_frames=right_frames, )
[docs] def forward(self, wav): """Returns a set of mfccs generated from the input waveforms. Arguments --------- wav : tensor A batch of audio signals to transform to features. """ STFT = self.compute_STFT(wav) mag = spectral_magnitude(STFT) fbanks = self.compute_fbanks(mag) mfccs = self.compute_dct(fbanks) if self.deltas: delta1 = self.compute_deltas(mfccs) delta2 = self.compute_deltas(delta1) mfccs = torch.cat([mfccs, delta1, delta2], dim=2) if self.context: mfccs = self.context_window(mfccs) return mfccs
[docs]class Leaf(torch.nn.Module): """ This class implements the LEAF audio frontend from Neil Zeghidour, Olivier Teboul, F{\'e}lix de Chaumont Quitry & Marco Tagliasacchi, "LEAF: A LEARNABLE FRONTEND FOR AUDIO CLASSIFICATION", in Proc. of ICLR 2021 (https://arxiv.org/abs/2101.08596) Arguments --------- out_channels : int It is the number of output channels. window_len: float length of filter window in milliseconds window_stride : float Stride factor of the filters in milliseconds sample_rate : int, Sampling rate of the input signals. It is only used for sinc_conv. min_freq : float Lowest possible frequency (in Hz) for a filter max_freq : float Highest possible frequency (in Hz) for a filter use_pcen: bool If True (default), a per-channel energy normalization layer is used learnable_pcen: bool: If True (default), the per-channel energy normalization layer is learnable use_legacy_complex: bool If False, torch.complex64 data type is used for gabor impulse responses If True, computation is performed on two real-valued tensors skip_transpose: bool If False, uses batch x time x channel convention of speechbrain. If True, uses batch x channel x time convention. Example ------- >>> inp_tensor = torch.rand([10, 8000]) >>> leaf = Leaf( ... out_channels=40, window_len=25., window_stride=10., in_channels=1 ... ) >>> out_tensor = leaf(inp_tensor) >>> out_tensor.shape torch.Size([10, 50, 40]) """ def __init__( self, out_channels, window_len: float = 25.0, window_stride: float = 10.0, sample_rate: int = 16000, input_shape=None, in_channels=None, min_freq=60.0, max_freq=None, use_pcen=True, learnable_pcen=True, use_legacy_complex=False, skip_transpose=False, n_fft=512, ): super(Leaf, self).__init__() self.out_channels = out_channels window_size = int(sample_rate * window_len // 1000 + 1) window_stride = int(sample_rate * window_stride // 1000) if input_shape is None and in_channels is None: raise ValueError("Must provide one of input_shape or in_channels") if in_channels is None: in_channels = self._check_input_shape(input_shape) self.complex_conv = GaborConv1d( out_channels=2 * out_channels, in_channels=in_channels, kernel_size=window_size, stride=1, padding="same", bias=False, n_fft=n_fft, sample_rate=sample_rate, min_freq=min_freq, max_freq=max_freq, use_legacy_complex=use_legacy_complex, skip_transpose=True, ) self.pooling = GaussianLowpassPooling( in_channels=self.out_channels, kernel_size=window_size, stride=window_stride, skip_transpose=True, ) if use_pcen: self.compression = PCEN( self.out_channels, alpha=0.96, smooth_coef=0.04, delta=2.0, floor=1e-12, trainable=learnable_pcen, per_channel_smooth_coef=True, skip_transpose=True, ) else: self.compression = None self.skip_transpose = skip_transpose
[docs] def forward(self, x): """ Returns the learned LEAF features Arguments --------- x : torch.Tensor of shape (batch, time, 1) or (batch, time) batch of input signals. 2d or 3d tensors are expected. """ if not self.skip_transpose: x = x.transpose(1, -1) unsqueeze = x.ndim == 2 if unsqueeze: x = x.unsqueeze(1) outputs = self.complex_conv(x) outputs = self._squared_modulus_activation(outputs) outputs = self.pooling(outputs) outputs = torch.maximum( outputs, torch.tensor(1e-5, device=outputs.device) ) if self.compression: outputs = self.compression(outputs) if not self.skip_transpose: outputs = outputs.transpose(1, -1) return outputs
def _squared_modulus_activation(self, x): x = x.transpose(1, 2) output = 2 * torch.nn.functional.avg_pool1d( x ** 2.0, kernel_size=2, stride=2 ) output = output.transpose(1, 2) return output def _check_input_shape(self, shape): """Checks the input shape and returns the number of input channels. """ if len(shape) == 2: in_channels = 1 elif len(shape) == 3: in_channels = 1 else: raise ValueError( "Leaf expects 2d or 3d inputs. Got " + str(len(shape)) ) return in_channels